Total Eradication of Bacterial Infection in Root Canal Treatment: An Electrochemical Approach.

ACS Biomater Sci Eng

Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, Illinois 61107, United States.

Published: July 2018

According to the American Association of Endodontists, currently 22.3 million endodontic procedures are being performed annually with the success rate of 70-95% and the average survival rate of the root canal procedure is approximately 67% after 5 years and 56% after 8 years. One of the major reason for the failure is relapse of infection. Hence, it is imperative to develop an assistive or alternative method to eradicate the bacterial infection effectively without affecting patient compliance. The application of electrochemistry has been used previously to disinfect catheters and implant disinfection. Hence, the aim of this study is to utilize the principles of electrochemistry to develop a microelectronic device to eradicate bacterial infection for root canal treatment. The electrochemical protocol includes open circuit potential (60 s) and potentiostatic scan at varying voltage (-9 to +2 V) at a different time duration (1-5 min). in the form of planktonic and biofilm was used in this study. After electrochemical treatment, the bacterial viability was evaluated using alamarBlue assay, colony forming units, confocal microscopy, and scanning electron microscopy. Cytotoxicity evoked by electrochemical voltage in comparison to NaOCl solution was performed using osteoblasts in 2D and 3D cell culture systems. The results of the study show that the application of -2 to +2 V at 1-5 min did not show any significant reduction in bacterial growth. However, the cathodic voltage of -9 V for 5 min showed a significant reduction ( < 0.001) in the bacterial count (80-95%). Similar results were obtained from biofilm study, which is more realistic to the in vivo condition. In contrast, the method did not induce cytotoxicity to the cells in 3D culture system (65% viability) in comparison to the highly toxic nature (0% viability) of NaOCl, indicating better patient compliance. Hence, the study provides supporting evidence to develop an electrochemically driven microelectronic device that can be a potential assistive dental instrument for endodontic procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.8b00136DOI Listing

Publication Analysis

Top Keywords

bacterial infection
12
root canal
12
infection root
8
canal treatment
8
treatment electrochemical
8
endodontic procedures
8
eradicate bacterial
8
patient compliance
8
microelectronic device
8
1-5 min
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!