Inhibition of the cryoprecipitation of cryoimmunoglobulins by neutral salts suggests that intermolecular electrostatic (charge-charge) interactions are responsible for their abnormal solution properties. To test this hypothesis, H+ titration curves and isoelectric points were measured for two monoclonal IgG cryoglobulins (Ger and Muk) and compared with four normal (cold soluble) monoclonal IgG. The cryoglobulin Ger manifested values outside the range encountered for the other proteins. The partitioning of the IgG proteins was also examined in aqueous polyethylene glycol-dextran two-phase systems in the presence of both positive and negative salt-induced electrostatic potentials across the phase interface. Both cryoglobulins were found to behave as if they were more negatively charged than the noncryoglobulins. The experiments support the hypothesis that the differences in solubility behavior of monoclonal cryoglobulin and noncryoglobulin proteins are caused by differences in the electrostatic properties of the proteins.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!