Peptides with proper sequences are capable of self-assembling into well-defined nanostructures, which can subsequently grow and entangle into three-dimensional nanomatrices. In this study, hemopressin, a cannabinoid receptor-modulating peptide derived from the α-chain of hemoglobin known to self-assemble into nanofibrils, was examined for its potential applicability as a gelator. The results indicated that hemopressin's gel formation was dependent on pH and salt concentration. Although hemopressin's macroscopic states showed differences, its microscopic structure remained largely unchanged in which it consisted mainly of the antiparallel β-sheet conformation as confirmed by FTIR (C=O stretch peaks at 1630 and 1695 cm) and CD (β-sheet peak at 195 nm). The major difference between the gel and sol states was displayed in the fibril length in which the gelation at pH 7.4 resulted in 4 μm fibrils, whereas the solution at pH 5.0 showed 800 nm fibrils. The pH-dependent sol-gel phase transition property was then utilized for the investigation of the pH-responsive release of FITC-dextran (4-40 kDa) from hemopressin fibrillary gel. Finally, the biocompatibility of the peptide was demonstrated by proliferation assay of cultured bone marrow mesenchymal stem cells. Altogether, the results suggested that hemopressin is a potentially promising candidate as a therapeutically active platform for drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.8b00423 | DOI Listing |
Viruses
December 2024
Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, China.
Human respiratory syncytial virus (RSV) remains a significant global health threat, particularly for vulnerable populations. Despite extensive research, effective antiviral therapies are still limited. To address this urgent need, we present AVP-GPT2, a deep-learning model that significantly outperforms its predecessor, AVP-GPT, in designing and screening antiviral peptides.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.
Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
Background/objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug.
Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis.
Pharmaceutics
January 2025
CDL Research, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.
View Article and Find Full Text PDFPharmaceutics
January 2025
Pharmacy, Pharmaceutical Technology and Physico-Chemical Department, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
This study explores the development and characterization of lyophilized chondroitin sulfate (CHON)-loaded solid lipid nanoparticles (SLN) as an innovative platform for advanced drug delivery. Solid lipid nanoparticles are increasingly recognized for their biocompatibility, their ability to encapsulate diverse compounds, their capacity to enhance drug stability, their bioavailability, and their therapeutic efficacy. CHON, a naturally occurring glycosaminoglycan with anti-inflammatory and regenerative properties, was integrated into SLN formulations using the hot microemulsion technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!