Hydrophobically driven self-assembly is a well-understood principle that has been shown to facilitate micelle formation. Although quite useful, the library of structures accessible is limited to only a few simplistic geometric configurations that are suboptimal for complex applications. It is believed that other physical phenomena like hydrogen bonding and electrostatic interactions can be exploited to complement hydrophobic interactions allowing for the design of structurally complex, aggregated micelles. To test this theory, ABC triblock peptide amphiphiles comprising an application-specific peptide, a zwitterion-like peptide, and a hydrophobic lipid were synthesized for which block sequence modifications and order changes were used to investigate their impact on micelle formation. The results provide significant evidence that both hydrophobic and electrostatic driving forces influence the formation of complex micellar structures. Specifically, hydrophobic self-assembly facilitates individual micelle formation, whereas dipole electrostatic interactions govern the association of micelle units into complex architectures. Initial results indicate that there exists considerable flexibility in the choice of application-specific peptide allowing these structures to serve as a platform technology for a variety of fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.8b00300DOI Listing

Publication Analysis

Top Keywords

micelle formation
12
triblock peptide
8
peptide amphiphiles
8
structurally complex
8
electrostatic interactions
8
application-specific peptide
8
peptide
5
complex
5
micelle
5
instructive design
4

Similar Publications

The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate.

View Article and Find Full Text PDF

This work aimed to investigate the adsorption of organic compounds (4-nitroaniline and 4-chlorophenoxyacetic acid) on activated carbon in the presence of selected dyes (uranine and Acid Red 88) and surfactants (sodium dodecyl sulfate and hexadecyltrimethylammonium bromide). The adsorbent, i.e.

View Article and Find Full Text PDF

New Insights on Strain 1B Surface-Active Biomolecules: Gordofactin Properties.

Molecules

December 2024

Unidade de Bioenergia e Biorrefinarias, LNEG-Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.

Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer.

View Article and Find Full Text PDF

Background: Curcumin is a polyphenolic compound derived from the food spice turmeric that has received interest from the medical and scientific world for its role in the management of several conditions. Clinical studies, in humans, have shown that ingested Curcumin is safe even at high doses (12 g/day), but it has poor bioavailability primarily due to poor absorption and rapid metabolism and elimination. Several strategies have been implemented to improve the bioavailability of Curcumin, for example, the combination of piperine in a complex with Curcumin, or the usage of formulations with phospholipid or liposomal complexes.

View Article and Find Full Text PDF

Synergistic antimicrobial efficacy of glabrol and colistin through micelle-based co-delivery against multidrug-resistant bacterial pathogens.

Phytomedicine

January 2025

Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

Background: Widespread bacterial infection and the spread of multidrug resistance (MDR) exhibit increasing threats to the public and thus require new antibacterial strategies. Coupled with the current slow pace of antibiotic development, the use of antibiotic adjuvants to revitalize existing antibiotics offers great potential.

Purpose: We aim to explore the synergistic antimicrobial mechanism of glabrol (GLA) and colistin (COL) while developing an innovative multifunctional micelle-based drug delivery system to enhance therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!