The preparation of various types of miktoarm star polymers with precisely controlled structures (AB, ABC, ABC, etc.) has made significant progress due to the considerable advances in the synthetic strategies, including multistep protections/deprotections, orthogonality, and integration of different polymerization techniques. However, compared to the well-developed synthesis methodologies, the investigations on miktoarm star copolymers as drug delivery vehicles remain relatively unexplored, especially for the relationship of their branched structures and properties as drug delivery systems. To elucidate this structure-property relationship of amphiphilic miktoarm star polymers, we prepared four different amphiphilic miktoarm star copolymers with the respectively identical molecular weights (MWs) of hydrophilic and hydrophobic moieties but different star structures using heteroinitiators that were synthesized by protection/deprotection strategies for integrated ring-opening polymerization of hydrophobic ε-caprolactone and atom transfer radical polymerization of hydrophilic oligo (ethylene glycol) monomethyl ether methacrylate (OEGMA). Further screening of an optimal formulation for anticancer drug delivery by the stability of micelles, in vitro drug loading capacity, drug release properties, cellular uptake efficacy, and cytotoxicity of doxorubicin (DOX)-loaded micelles showed that PCLPOEGMA micelles possessed the lowest critical micelle concentration, the highest drug loading content, and enhanced therapeutic efficiency for DOX release of all the synthesized four star copolymer constructs. This study thus provides preliminary guidelines and rationalities for the construction of amphiphilic miktoarm star polymers toward enhanced anticancer drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.8b00678 | DOI Listing |
Biomacromolecules
December 2024
Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
Recently, we published a study demonstrating the promising structure-activity relationship of 4-arm star polymers toward bacterial cells and biofilms. The aim of this study was to increase the number of arms to determine if this could further enhance activity via the arm-first approach, which enables access to star structures with a higher number of arms. A library of amphiphilic diblock and miktoarm star polymers was successfully synthesized, and their biological properties were assessed.
View Article and Find Full Text PDFChemistry
November 2024
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0032, Japan.
Supramolecular interactions between polymers play a crucial role in the construction of three-dimensional polymer structures with unique physical and chemical properties. In this study, we have fabricated a novel supramolecular miktoarm star copolymer (μ-star) with a cobalt(II) phthalocyanine (CoPc) core using metal-ligand coordination. Axial coordination of the terminal pyridyl group of poly(methyl methacrylate) with the CoPc core of four-armed star-shaped polystyrene provided AB- and AB-type μ-stars through stepwise complexation.
View Article and Find Full Text PDFPhys Rev E
September 2024
Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
We study the phase separation kinetics of miktoarm star polymer (MSP) melts/blends with diverse architectures using dissipative particle dynamics simulation. Our study focuses on symmetric and asymmetric miktoarm star polymer (SMSP/AMSP) mixtures based on arm composition and number. For a fixed MSP chain size, the characteristic microphase-separated domains initially show diffusive growth with a growth exponent ϕ∼1/3 for both melts that gradually crossover to saturation at late times.
View Article and Find Full Text PDFBiomacromolecules
October 2024
Biotherapeutics Division, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
Miktoarm star polymers exhibit a captivating range of physicochemical properties, setting them apart from their linear counterparts. This study devised a synthetic pathway to synthesize cationic miktoarm stars utilizing polypept(o)ides (PeptoMiktoStars), comprising 3 or 6 polysarcosine (pSar) arms (AB, AB, overall 300) for shielding and a cross-linkable poly(-ethylsulfonyl-l-homocysteine) (pHcy(SOEt)) block and a poly(l-lysine) ((pLys)) block for nucleic acid complexation. Precise control over the DP and narrow molecular weight distributions ( ≈ 1.
View Article and Find Full Text PDFThe self-assembly of miktoarm star polymers μ-A (B(D)) C in a neutral solution and the pH-responsive behaviors of vesicles and spherical micelles in an acidic solution have been investigated by DPD simulation. The results show that the self-assembled morphologies can be regulated by the lengths of pH-responsive arm B and hydrophilic arm C, leading to the formation of vesicles, discoidal micelles, and spherical micelles in a neutral solution. The dynamic evolution pathways of vesicles and spherical micelles are categorized into three stages: nucleation, coalescence, and growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!