Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been well documented that agricultural activities lead to significant alterations in surface water dissolved organic matter (DOM), yet their impacts on groundwater DOM remain poorly constrained. The quantity, source, and composition of DOM play a pivotal role in a range of groundwater ecosystem services that are of important ecological and societal values. We assessed the impact of irrigation on the source and compositional characteristics of groundwater DOM in a large river basin supporting intensive agriculture in arid northwestern China. We sampled five water types along a river reach of approximately 40 km, including groundwater, river water, irrigation canal water, hyporheic water, and soil leachates. The excitation-emission matrix (EEM) measurements coupled with parallel factor analysis (PARAFAC) identified two terrestrial-derived, humic-like fluorescent components (C1 and C2) and one protein-like autochthonous component (C3). DOM composition and dissolved organic carbon (DOC) concentration varied as a function of water type, with subsurface waters showing relatively lower DOC and terrestrial humic fluorescence than surface waters. Combining nitrate, electrical conductivity, dissolved inorganic carbon (DIC), and δC-DIC, irrigation-influenced samples were identified, and the influence of irrigation on groundwater DOM appeared only in shallow aquifers (<50 m). Irrigation-influenced groundwater exhibited higher DOC and terrestrial fluorescence than unimpacted groundwater, suggesting that irrigation return flows accelerated the downward movement of terrestrial humic compounds and led to their accumulation in aquifers. This effect was propagated via surface water-groundwater interactions to upwelling hyporheic water, which also showed enrichment in terrestrial fluorescence. Our findings demonstrate that irrigation can accelerate the biogeochemical cycling of organic compounds via a subsurface pathway of from the soil to aquifer to hyporheic zone. The enrichment of soil-derived compounds in subsurface waters may have important ecological consequences, such as altering the transport of nutrients and pollutants and changing carbon and energy flows across the surface-subsurface boundary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.144372 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!