The wide industrial cultivation of Pleurotus eryngii (P. eryngii) has resulted in the massive production of mushroom residues (MR) with low-efficiency utilization. In the present study, the P. eryngii enzymatic residue polysaccharide (PERP) was obtained from the P. eryngii residues. The characterization analysis showed that PERP was polysaccharides comprised of five kinds of monosaccharides with molecular weight of 2.05 × 10 Da. PERP also showed rough surface and appeared as spherical structure dispersed in aqueous solution. The animal experiment analysis demonstrated that PERP exhibited potential anti-ageing effects on the brain, liver, kidney and skin, possibly by scavenging reactive radicals, improving the antioxidant status, supressing lipid peroxidation, enhancing organ functions and ameliorating histopathological damage. These results may provide a reference for the efficient utilization of P. eryngii residues in exploring MR-derived functional foods or drugs that delay the ageing process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.01.030 | DOI Listing |
Arch Microbiol
January 2025
School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.
View Article and Find Full Text PDFPharmaceutics
December 2024
School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.
Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
Oxidative stress caused by reactive oxygen species (ROS) affects the aging process and increases the likelihood of several diseases. A new frontier in its prevention includes bioactive foods and natural extracts that can be introduced by the diet in combination with specific probiotics. Among the natural compounds that we can introduce by the diet, extract is one of the most utilized since it contains a vast number of bioactive molecules such as phenolic acids, flavonoids, and polysaccharides that have been shown to possess antioxidant, anti-ageing, anti-cancer, and immunomodulatory activity.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
Particulate matter (PM), particularly fine (PM) and ultrafine (PM) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications.
View Article and Find Full Text PDFMetabolites
January 2025
Medical Department, Cantabria Labs Difa Cooper, 21042 Caronno Pertusella, Italy.
This study aimed to evaluate the efficacy of a novel "In & Out" strategy, combining topical and oral melatonin supplementation, in managing skin aging compared to topical treatment alone. A randomized, prospective study was conducted on 39 healthy females aged 55-69 years. Participants were divided into two groups: one received both the topical formula and oral melatonin supplementation (Group A), while the other received a topical melatonin-based formula (Group B).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!