Versatile Surface Functionalization of Water-Dispersible Iron Oxide Nanoparticles with Precisely Controlled Sizes.

Langmuir

Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States.

Published: January 2021

AI Article Synopsis

  • The paper discusses a method for creating water-dispersible iron oxide nanoparticles suitable for biomedical applications through a one-pot synthesis process that allows for versatile surface functionalization.
  • The nanoparticles are synthesized from iron(III) acetylacetonate, with size control achieved by regulating their growth, and their surfaces are modified using various ligands like dopamine and polyethylene glycol.
  • Characterization techniques confirm that the nanoparticles maintain their structure post-modification and show potential for improved stability and biological functionality, including use as dual-modality contrast agents in magnetic resonance imaging.

Article Abstract

The synthesis of highly water-dispersible iron oxide nanoparticles with surface functional groups and precisely controlled sizes is essential for biomedical application. In this paper, we report a one-pot strategy for versatile surface functionalization. The iron oxide nanoparticles are first synthesized by thermal decomposition of iron(III) acetylacetonate (Fe(acac)) in diethylene glycol (DEG), and their surfaces are modified by adding the surface ligands at the end of the reaction. The size of iron oxide nanoparticles can be precisely controlled in nanometer scale by continuous growth. This facile synthesis method enables the surface modification with different coating materials such as dopamine (DOPA), polyethylene glycol with thiol end group (thiol-PEG), and poly(acrylic acid) (PAA) onto the iron oxide nanoparticles, introducing new surface functionalities for future biomedical application. From transmission electron microscopy (TEM) and X-ray diffraction (XRD), the morphology and crystal structure are not changed during surface functionalization. The attachment of surface ligands is studied by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). The surface functional groups are confirmed by X-ray Photoelectron Spectroscopy (XPS). In correlation with the change of hydrodynamic size, PAA coated nanoparticles are found to exhibit outstanding stability in aqueous solution. Furthermore, we demonstrate that the functional groups are available for conjugating with other molecules such as fluorescent dye, showing potential biological applications. Lastly, the magnetic resonance phantom studies demonstrate that iron oxide nanoparticles with PAA coating can be used as and dual-modality contrast agents. Both and relaxivities significantly increase after surface functionalization with PAA, indicating improved sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c03314DOI Listing

Publication Analysis

Top Keywords

iron oxide
24
oxide nanoparticles
24
surface functionalization
16
precisely controlled
12
functional groups
12
surface
9
versatile surface
8
water-dispersible iron
8
nanoparticles precisely
8
controlled sizes
8

Similar Publications

Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).

View Article and Find Full Text PDF

During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.

View Article and Find Full Text PDF

Vanadium-based oxides have garnered significant attention for aqueous zinc batteries (AZBs), whereas sluggish Zn diffusion and structural collapse remain major challenges in achieving high-performance cathodes. Herein, different structures of iron-vanadium oxides were fabricated by modulating the amount of vanadium content. It is found that the porous Mott-Schottky heterojunction composed of FeVO and FeVO mixed phase was used to construct a self-generated FeVO-5 structure, which could lower the diffusion barrier and improve the electron transport derived from the formed built-in electric field at the interface, showing faster reaction kinetics and improved capacity compared with the singe-phase FeVO-1.

View Article and Find Full Text PDF

Robotic Microcapsule Assemblies with Adaptive Mobility for Targeted Treatment of Rugged Biological Microenvironments.

ACS Nano

January 2025

Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Microrobots are poised to transform biomedicine by enabling precise, noninvasive procedures. However, current magnetic microrobots, composed of solid monolithic particles, present fundamental challenges in engineering intersubunit interactions, limiting their collective effectiveness in navigating irregular biological terrains and confined spaces. To address this, we design hierarchically assembled microrobots with multiaxis mobility and collective adaptability by engineering the potential magnetic interaction energy between subunits to create stable, self-reconfigurable structures capable of carrying and protecting cargo internally.

View Article and Find Full Text PDF

Berberine ameliorates seizure activity and cardiac dysfunction in pentylenetetrazol-kindling seizures in rats: Modulation of sigma1 receptor, Akt/eNOS signaling, and ferroptosis.

Neuropharmacology

January 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt.

Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!