Background And Aims: Nonalcoholic fatty liver disease (NAFLD) is simple steatosis but can develop into nonalcoholic steatohepatitis (NASH), characterized by liver inflammation, fibrosis, and microvesicular steatosis. Mast cells (MCs) infiltrate the liver during cholestasis and promote ductular reaction (DR), biliary senescence, and liver fibrosis. We aimed to determine the effects of MC depletion during NAFLD/NASH.
Approach And Results: Wild-type (WT) and Kit (MC-deficient) mice were fed a control diet (CD) or a Western diet (WD) for 16 weeks; select WT and Kit WD mice received tail vein injections of MCs 2 times per week for 2 weeks prior to sacrifice. Human samples were collected from normal, NAFLD, or NASH mice. Cholangiocytes from WT WD mice and human NASH have increased insulin-like growth factor 1 expression that promotes MC migration/activation. Enhanced MC presence was noted in WT WD mice and human NASH, along with increased DR. WT WD mice had significantly increased steatosis, DR/biliary senescence, inflammation, liver fibrosis, and angiogenesis compared to WT CD mice, which was significantly reduced in Kit WD mice. Loss of MCs prominently reduced microvesicular steatosis in zone 1 hepatocytes. MC injection promoted WD-induced biliary and liver damage and specifically up-regulated microvesicular steatosis in zone 1 hepatocytes. Aldehyde dehydrogenase 1 family, member A3 (ALDH1A3) expression is reduced in WT WD mice and human NASH but increased in Kit WD mice. MicroRNA 144-3 prime (miR-144-3p) expression was increased in WT WD mice and human NASH but reduced in Kit WD mice and was found to target ALDH1A3.
Conclusions: MCs promote WD-induced biliary and liver damage and may promote microvesicular steatosis development during NAFLD progression to NASH through miR-144-3p/ALDH1A3 signaling. Inhibition of MC activation may be a therapeutic option for NAFLD/NASH treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271361 | PMC |
http://dx.doi.org/10.1002/hep.31713 | DOI Listing |
J Clin Pathol
January 2025
Institute of Liver Studies, King's College Hospital, London, UK
Aims: To reveal clinicopathological characteristics of alcoholic foamy degeneration (AFD)-an uncommon form of alcoholic liver injury.
Methods: Clinicopathological features of AFD (n=9) were examined in comparison to those of severe alcoholic hepatitis (SAH; n=12).
Results: Patients with AFD presented with either biochemical liver dysfunction (n=1) or clinical jaundice (n=8).
Clin Res Hepatol Gastroenterol
January 2025
INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, 35000 Rennes, France. Electronic address:
Mitochondrial activity is necessary for the maintenance of many liver functions. In particular, mitochondrial fatty acid oxidation (FAO) is required for energy production and lipid homeostasis. This key metabolic pathway is finely tuned by the mitochondrial respiratory chain (MRC) activity and different transcription factors such as peroxisome proliferator-activated receptor α (PPARα).
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
In recent years, the industrial substitution of long-chain per- and polyfluoroalkyl substances (PFAS) with short-chain alternatives has become increasingly prevalent, resulting in the widespread environmental detection of perfluorohexanesulfonic acid (PFHxS), a short-chain PFAS. However, there remains limited information about the potential adverse effects of PFHxS at environmental concentrations to wildlife. Here, early life stage zebrafish () were exposed to environmentally relevant concentrations of PFHxS to better characterize the adverse effects of PFHxS on aquatic organisms.
View Article and Find Full Text PDFRev Gastroenterol Peru
November 2024
Department of Biochemistry, Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia.
Background: One of the pathways involved in liver regeneration processes is TWEAK/Fn14 (tumor necrosis factor-related weak inducer of apoptosis/fibroblast growth factor-inducible 14), which has been proposed to act directly and selectively on hepatic progenitor cells; however, its role in the regeneration of steatotic liver metabolic dysfunction associated fatty liver disease has not been fully elucidated.
Objective: To evaluate the behavior of Fn14 and its ligand TWEAK, as well as cellular stress signals as biochemical cues for possible liver regeneration in MAFLD.
Materials And Methods: A prospective study was carried out where the behavior of Fn14 and its ligand TWEAK, as well as cellular stress signals were observed as biochemical indications of a possible liver regeneration in a condition of tissue damage caused by excessive lipid accumulation.
Front Nutr
October 2024
Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health concern that is exacerbated by the obesity pandemic. Dietary interventions have the potential to alleviate obesity-associated MASLD through variable mechanisms, including optimizing the gut microbiota. Previously, we reported that soy protein concentrate (SPC) with low or high levels of isoflavone (LIF or HIF) protected young obese Zucker rats from developing liver steatosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!