Correction: An ultrahigh thermal conductive graphene flexible paper.

Nanoscale

Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Published: January 2021

Correction for 'An ultrahigh thermal conductive graphene flexible paper' by Jiheng Ding et al., Nanoscale, 2017, 9, 16871-16878, DOI: 10.1039/C7NR06667H.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr90289fDOI Listing

Publication Analysis

Top Keywords

ultrahigh thermal
8
thermal conductive
8
conductive graphene
8
graphene flexible
8
correction ultrahigh
4
flexible paper
4
paper correction
4
correction 'an
4
'an ultrahigh
4
flexible paper'
4

Similar Publications

A simple and integrated fiber-optic real-time qPCR platform for remote and distributed detection of epidemic virus infection.

Biosens Bioelectron

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China; College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Quantitative polymerase chain reaction (qPCR) is a well-recognized technique for amplifying and quantifying nuclear acid, and its real-time monitoring capability, ultrahigh sensitivity, and accuracy make it a "golden-standard" tool in both molecular biology research and clinical diagnostics. However, current qPCR tests rely on bulky instrumentation and skilled laboratorians in centralized laboratories, which spatially and temporally separate the sample collection and test, leading to longer sample turnaround times (TATs) and limited working conditions. Herein, we propose an integrated optical fiber real-time polymerase chain reaction (iF-PCR) system that successfully allows convenient sample collection, rapid thermocycling, closed-loop thermal annealing, and real-time fluorescence detection in a tiny capillary reactor.

View Article and Find Full Text PDF

Sub-millikelvin-resolved superconducting nanowire single-photon detector operates with sub-pW infrared radiation power.

Natl Sci Rev

January 2025

Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.

The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by using an infrared detector. The lower the NETD, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultra-high sensitivity.

View Article and Find Full Text PDF

Phase Coexistence Induced Giant Dielectric Tunability and Electromechanical Response in PbZrO Epitaxial Thin Films.

Small

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

PbZrO (PZO) thin films, as a classic antiferroelectric material, have attracted tremendous attention for their excellent dielectric, electromechanical, and thermal switching performances. However, several fundamental questions remain unresolved, particularly the existence of an intermediate phase during the transition from the antiferroelectric (AFE) to ferroelectric (FE) state. Here, a phase coexistence configuration of an orthorhombic AFE phase and a tetragonal-like (T-like) phase is reported in epitaxial antiferroelectric PZO thin films, with thickness ranging from 16 to 110 nm.

View Article and Find Full Text PDF

Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.

View Article and Find Full Text PDF

A novel hierarchical porous biochar based on ZIF-8 volatile hard template with high-efficiency electrochemical sensing performance for trace determination of Ponceau 4R.

Mikrochim Acta

January 2025

Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species 2024SSY04093, College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.

A convenient method is proposed using a heat-treatable volatile template to prepare hierarchical porous biochar (HPB). Litsea cubeba leaves and ZIF-8 served as carbon source and volatile hard template, respectively. The good compatibility between ZIF-8 and biomass facilitated their uniform dispersion, and the thermal decomposition of ZIF-8 created abundant pores in the HPB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!