Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Event sequences are central to the analysis of data in domains that range from biology and health, to logfile analysis and people's everyday behavior. Many visualization tools have been created for such data, but people are error-prone when asked to judge the similarity of event sequences with basic presentation methods. This article describes an experiment that investigates whether local and global alignment techniques improve people's performance when judging sequence similarity. Participants were divided into three groups (basic versus local versus global alignment), and each participant judged the similarity of 180 sets of pseudo-randomly generated sequences. Each set comprised a target, a correct choice and a wrong choice. After training, the global alignment group was more accurate than the local alignment group (98 versus 93 percent correct), with the basic group getting 95 percent correct. Participants' response times were primarily affected by the number of event types, the similarity of sequences (measured by the Levenshtein distance) and the edit types (nine combinations of deletion, insertion and substitution). In summary, global alignment is superior and people's performance could be further improved by choosing alignment parameters that explicitly penalize sequence mismatches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2021.3050497 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!