Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate.

Glob Chang Biol

Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA, USA.

Published: March 2021

Wild bees, like many other taxa, are threatened by land-use and climate change, which, in turn, jeopardizes pollination of crops and wild plants. Understanding how land-use and climate factors interact is critical to predicting and managing pollinator populations and ensuring adequate pollination services, but most studies have evaluated either land-use or climate effects, not both. Furthermore, bee species are incredibly variable, spanning an array of behavioral, physiological, and life-history traits that can increase or decrease resilience to land-use or climate change. Thus, there are likely bee species that benefit, while others suffer, from changing climate and land use, but few studies have documented taxon-specific trends. To address these critical knowledge gaps, we analyzed a long-term dataset of wild bee occurrences from Maryland, Delaware, and Washington DC, USA, examining how different bee genera and functional groups respond to landscape composition, quality, and climate factors. Despite a large body of literature documenting land-use effects on wild bees, in this study, climate factors emerged as the main drivers of wild-bee abundance and richness. For wild-bee communities in spring and summer/fall, temperature and precipitation were more important predictors than landscape composition, landscape quality, or topography. However, relationships varied substantially between wild-bee genera and functional groups. In the Northeast USA, past trends and future predictions show a changing climate with warmer winters, more intense precipitation in winter and spring, and longer growing seasons with higher maximum temperatures. In almost all of our analyses, these conditions were associated with lower abundance of wild bees. Wild-bee richness results were more mixed, including neutral and positive relationships with predicted temperature and precipitation patterns. Thus, in this region and undoubtedly more broadly, changing climate poses a significant threat to wild-bee communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986353PMC
http://dx.doi.org/10.1111/gcb.15485DOI Listing

Publication Analysis

Top Keywords

wild bees
16
land-use climate
16
landscape composition
12
climate factors
12
changing climate
12
climate
10
composition quality
8
quality climate
8
climate change
8
bee species
8

Similar Publications

Insights into adult worker foraging dynamics within a Bombus terrestris (Hymenoptera: Apidae) colony.

J Econ Entomol

December 2024

State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.

Bombus terrestris, an important eusocial insect, plays a vital role in providing pollination services for both wild plants and greenhouse crops. For the development of the colonies, the workers must leave the hives to collect nectar and pollen. However, limited findings about the foraging behavior of B.

View Article and Find Full Text PDF

Insecticide application prevents honey bees from realizing benefits of native forage in an agricultural landscape.

Sci Total Environ

December 2024

Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA. Electronic address:

Health and population status of bees is negatively affected by anthropogenic stressors, many of which co-occur in agricultural settings. While pollinator habitat (often involving plantings of native forbs) holds promise to benefit both managed and wild bees, important issues remain unresolved. These include whether conventional, broad-spectrum insecticide use negates these benefits and how non-native, managed honey bees affect wild bees in these areas.

View Article and Find Full Text PDF

The growing urbanization process is accompanied by the emergence of new habitats for wildlife, and cities are sometimes seen as refuges for pollinators such as wild bees compared to intensively cultivated rural habitats. However, the contrasting living conditions that combine high fragmentation, exposure to pollutants, and heat island effects, with low pesticide use and potentially high availability of resources, make it difficult to predict the overall effect of urban living on the health of wild bees. Moreover, if the responses of wild bee populations in terms of species richness and diversity have been the focus of many recent studies, individual responses to urbanization have been more rarely investigated.

View Article and Find Full Text PDF

Ground-nesting solitary bees are the most abundant bee species in the xeric areas of the world, but the effects of agrochemicals on them have been little studied. Herein, we evaluated the topical toxicity of an insecticide, a herbicide, and an essential oil on Mediterranean ground-nesting bees (Andrena impunctata, A. nigroolivacea, A.

View Article and Find Full Text PDF

Organisms may simultaneously face thermal, desiccation and nutritional stress under climate change. Understanding the effects arising from the interactions among these stressors is relevant for predicting organisms' responses to climate change and for developing effective conservation strategies. Using both dynamic and static protocols, we assessed for the first time how sublethal desiccation exposure (at 16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!