Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organ development occurs through the coordinated interaction of distinct tissue types. So, a question at the core of understanding the evolution of new organs is, how do new tissue-tissue signalling networks arise? The placenta is a great model for understanding the evolution of new organs, because placentas have evolved repeatedly, evolved relatively recently in some lineages, and exhibit intermediate forms in extant clades. Placentas, like other organs, form from the interaction of two distinct tissues, one maternal and one fetal. If each of these tissues produces signals that can be received by the other, then the apposition of these tissues is likely to result in new signalling dynamics that can be used as a scaffold to support placenta development. Using published data and examples, in this review I demonstrate that placentas are derived from hormonally active organs, that considerable signalling potential exists between maternal and fetal tissues in egg-laying vertebrates, that this signalling potential is conserved through the oviparity-viviparity transition, and that consequences of these interactions form the basis of derived aspects of placentation including embryo implantation. I argue that the interaction of placental tissues, is not merely a consequence of placenta formation, but that novel interactions form the basis of new placental regulatory networks, functions, and patterning mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.21322 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!