Ischemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) in the aging population. A reduction of hydrogen sulfide (HS) production in the old kidney and renal IRI contribute to renal pathology and injury. Recent studies suggest that microRNAs (miRs) play an important role in the pathophysiology of AKI and a significant crosstalk exists between HS and miRs. Among the miRs, miR-21 is highly expressed in AKI and is reported to have both pathological and protective role. In the present study, we sought to determine the effects of age-induced reduction in HS and mir-21 antagonism in AKI. Wild type (WT, C57BL/6J) mice aged 12-14 weeks and 75-78 weeks underwent bilateral renal ischemia (27 min) and reperfusion for 7 days and were treated with HS donor, GYY4137 (GYY, 0.25 mg/kg/day, ip) or locked nucleic acid anti-miR-21 (20 mg/kg b.w., ip) for 7 days. Following IRI, old kidney showed increased macrophage polarization toward M1 inflammatory phenotype, cytokine upregulation, endothelial-mesenchymal transition, and fibrosis compared to young kidney. Treatment with GYY or anti-miR-21 reversed the changes and improved renal vascular density, blood flow, and renal function in the old kidney. Anti-miR-21 treatment in mouse glomerular endothelial cells showed upregulation of HS-producing enzymes, cystathionine β-synthase (CBS), and cystathionineγ-lyase (CSE), and reduction of matrix metalloproteinase-9 and collagen IV expression. In conclusion, exogenous HS and inhibition of miR-21 rescued the old kidney dysfunction due to IRI by increasing HS levels, reduction of macrophage-mediated injury, and promoting reparative process suggesting a viable approach for aged patients sustaining AKI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190249PMC
http://dx.doi.org/10.1007/s11357-020-00299-6DOI Listing

Publication Analysis

Top Keywords

hydrogen sulfide
8
mir-21 antagonism
8
ischemia reperfusion
8
reperfusion injury
8
kidney
7
injury
5
aki
5
renal
5
exogenous hydrogen
4
mir-21
4

Similar Publications

The endogenous reduction of nitrite to nitrosyl is drawing increasing attention as a protective mechanism against hypoxic injury in mammalian physiology and as an alternative source of NO, which is involved in a wide variety of biological activities. Thus, chemical mechanisms for this transformation, which are mediated by metallo proteins, are of considerable interest. The study described here examines the reactions of the biomimetic models Co(TTP)(NO) (TTP = meso-tetratolylporphyrinato dianion) and Mn(TPP)(ONO) (TPP = meso-tetraphenyl-porphyrinato dianion) in sublimated solid films with hydrogen sulfide (HS) and with ethanethiol (EtSH) at various temperatures from 77 K to room temperature using in situ infrared and optical spectroscopy.

View Article and Find Full Text PDF

The presence of redox-active molecules containing catenated sulfur atoms (supersulfides) in living organisms has led to a review of the concepts of redox biology and its translational strategy. Glutathione (GSH) is the body's primary detoxifier and antioxidant, and its oxidized form (GSSG) has been considered as a marker of oxidative status. However, we report that GSSG, but not reduced GSH, prevents ischemic supersulfide catabolism-associated heart failure in male mice by electrophilic modification of dynamin-related protein (Drp1).

View Article and Find Full Text PDF

Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy.

Nat Commun

January 2025

Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.

The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding.

View Article and Find Full Text PDF

Thermophilic microbial communities growing in low-oxygen environments often contain early-evolved archaea and bacteria, which hold clues regarding mechanisms of cellular respiration relevant to early life. Here, we conducted replicate metagenomic, metatranscriptomic, microscopic, and geochemical analyses on two hyperthermophilic (82-84 °C) filamentous microbial communities (Conch and Octopus Springs, Yellowstone National Park, WY) to understand the role of oxygen, sulfur, and arsenic in energy conservation and community composition. We report that hyperthermophiles within the Aquificota (Thermocrinis), Pyropristinus (Caldipriscus), and Thermoproteota (Pyrobaculum) are abundant in both communities; however, higher oxygen results in a greater diversity of aerobic heterotrophs.

View Article and Find Full Text PDF

A H2S-activated NIR-II imaging probe for precise diagnosis and pathological evaluation of colorectal tumor.

Theranostics

January 2025

Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, P. R. China.

The quick and accurate detection of colorectal cancer (CRC) is essential for improving the treatment efficacy and patient survival, which nevertheless remains challenging due to low specificity and sensitivity of current CRC diagnostic approaches. Therefore, providing a robust solution for real-time and accurate tumor delineation is highly desirable. We report a novel polyacrylic acid-mediated strategy to develop the endogenous hydrogen sulfide (HS)-activated NIR-II probe DCNP@PB for specific visualization of CRC and image-guided tumor surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!