A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Jungle rubber facilitates the restoration of degraded soil of an existing rubber plantation. | LitMetric

Jungle rubber facilitates the restoration of degraded soil of an existing rubber plantation.

J Environ Manage

CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China. Electronic address:

Published: March 2021

AI Article Synopsis

  • The conversion of tropical forests to rubber plantations leads to significant soil degradation, negatively affecting water content, pH, and nutrient levels.
  • Transforming rubber monoculture into jungle rubber can reverse these effects, increasing soil carbon, nitrogen, phosphorus, calcium, and magnesium levels.
  • Jungle rubber also enhances soil physical properties and boosts phosphorus availability, suggesting that multi-strata, multi-species rubber agroforestry can effectively restore degraded rubber plantations.

Article Abstract

Conversion of forest to rubber plantation is one of the most common land-use change in the humid tropical region. It is one of the fastest expanding farms that lead to various socioenvironmental issues. We investigated the effect of this land-use change on soil physico-chemical properties by surveying different succession stage rubber plantations, including monoculture and a mixture derived by mixing jungle rubber and a reference tropical rainforest. We also assessed the impact on stoichiometric ratios and allocation relationships of soil carbon (C), nitrogen (N), and phosphorus (P). Our results demonstrated that conversion of tropical rainforest to rubber monoculture resulted in serious soil degradation, with a lower level of water content, water holding capacities, total porosity, pH, and soil nutrients, and a higher level of soil bulk density. However, after transforming a rubber monoculture into a jungle rubber, the concentrations of soil total C, N, P, Ca, and Mg significantly increased, by 28%, 24%, 23%, 17%, and 39%, respectively. Meanwhile, soil salinity declined by 15%. Jungle rubber also exerted some desirable effects on soil physical properties, such as decreased soil bulk density, increased field capacity and non-porosity by 6%, 2%, and 33%, respectively. Like other tropical regions, soils in the present study areas are mainly under P limitation, but jungle rubber increased soil P turnover and thereby increases P availability. In conclusion, jungle rubber correcting the soil degradation resulted from rubber plantation on tropical forest soil. Given the improvements in soil quality, constructing multiple-strata and multi-species rubber agroforestry (e.g., jungle rubber) can be a promising approach to facilitate the restoration of the existing monoculture rubber plantations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.111959DOI Listing

Publication Analysis

Top Keywords

jungle rubber
28
soil
14
rubber
14
rubber plantation
12
land-use change
8
rubber plantations
8
tropical rainforest
8
rubber monoculture
8
soil degradation
8
soil bulk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!