Carbon nanotube electrodes were modified with ferrocene and laccase using two different click reactions strategies and taking advantage of bifunctional dendrimers and cyclopeptides. Using diazonium functionalization and the efficiency of oxime ligation, the combination of both multiwalled carbon nanotube surfaces and modified dendrimers or cyclopeptides allows the access to a high surface coverage of ferrocene in the order of 50 nmol cm, a 50-fold increase compared to a classic click reaction without oxime ligation of these highly branched macromolecules. Furthermore, this original immobilization strategy allows the immobilization of mono- and bi-functionalized active multicopper enzymes, laccases, copper(I)-catalyzed azide-alkyne cycloaddition. Electrochemical studies underline the high efficiency of the oxime-ligated dendrimers or cyclopeptides for the immobilization of redox entities on surfaces while being detrimental to electron tunneling with enzyme active sites despite controlled orientation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c02095DOI Listing

Publication Analysis

Top Keywords

dendrimers cyclopeptides
12
carbon nanotube
8
oxime ligation
8
clicked bifunctional
4
bifunctional dendrimeric
4
dendrimeric cyclopeptidic
4
cyclopeptidic addressable
4
addressable redox
4
redox scaffolds
4
scaffolds functionalization
4

Similar Publications

Stereorandomized Oncocins with Preserved Ribosome Binding and Antibacterial Activity.

J Med Chem

November 2024

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.

We recently showed that solid-phase peptide synthesis using racemic amino acids yields stereorandomized peptides comprising all possible diastereomers as homogeneous, single-mass products that can be purified by HPLC and that stereorandomization modulates activity, toxicity, and stability of membrane-disruptive cyclic and linear antimicrobial peptides (AMPs) and dendrimers. Here, we tested if stereorandomization might be compatible with target binding peptides with the example of the proline-rich AMP oncocin, which inhibits the bacterial ribosome. Stereorandomization of up to nine -terminal residues preserved ribosome binding and antibacterial effects including activities against drug-resistant bacteria and protected against serum degradation.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is one of the top ten threats to public health, as reported by the World Health Organization (WHO). One of the causes of the growing AMR problem is the lack of new therapies and/or treatment agents; consequently, many infectious diseases could become uncontrollable. The need to discover new antimicrobial agents that are alternatives to the existing ones and that allow mitigating this problem has increased, due to the rapid and global expansion of AMR.

View Article and Find Full Text PDF

Psoriasis is a life-threatening autoimmune inflammatory skin disease, triggered by T lymphocyte. Recently, the drugs most commonly used for the treatment of psoriasis include methotrexate (MTX), cyclosporine (CsA), acitretin, dexamethasone, and salicylic acid. However, conventional formulations due to poor absorptive capacity, inconsistent drug release characteristics, poor capability of selective targeting, poor retention of drug molecules in target tissue, and unintended skin reactions restrict the clinical efficacy of drugs.

View Article and Find Full Text PDF

The antibacterial activity of peptide dendrimers and polymyxin B increases sharply above pH 7.4.

Chem Commun (Camb)

June 2021

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.

pH-activity profiling reveals that antimicrobial peptide dendrimers (AMPDs) kill Klebsiella pneumoniae and Methicillin-resistant Staphylococcus aureus (MRSA) at pH = 8.0, against which they are inactive at pH = 7.4, due to stronger electrostatic binding to bacterial cells at higher pH.

View Article and Find Full Text PDF

The recruitment of endogenous antibodies against cancer cells has become a reliable antitumoral immunotherapeutic alternative over the last decade. The covalent attachment of antibody and tumor binding modules (ABM and TBM) within a single, well-defined synthetic molecule was indeed demonstrated to promote the formation of an interacting ternary complex between both the antibodies and the targeted cell, which usually results in the simultaneous immune-mediated cellular destruction. In a preliminary study, we have described the first Antibody Recruiting Glycodendrimers (ARGs), combining cRGD as ligands for the αVβ3-expressing melanoma cell line M21 and Rha as ligand for natural IgM, and demonstrated that multivalency is an essential requirement to form this complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!