Oligonucleotide-based materials such as spherical nucleic acid (SNA) have been reported to exhibit improved penetration through the epidermis and the dermis of the skin upon topical application. Herein, we report a self-assembled, skin-depigmenting SNA structure, which is based upon a bifunctional oligonucleotide amphiphile containing an antisense oligonucleotide and a tyrosinase inhibitor prodrug. The two components work synergistically to increase oligonucleotide cellular uptake, enhance drug solubility, and promote skin penetration. The particles were shown to reduce melanin content in B16F10 melanoma cells and exhibited a potent antimelanogenic effect in an ultraviolet B-induced hyperpigmentation mouse model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313479PMC
http://dx.doi.org/10.1021/jacs.0c12044DOI Listing

Publication Analysis

Top Keywords

spherical nucleic
8
nucleic acids
4
acids topical
4
topical treatment
4
treatment hyperpigmentation
4
hyperpigmentation oligonucleotide-based
4
oligonucleotide-based materials
4
materials spherical
4
nucleic acid
4
acid sna
4

Similar Publications

Nomadic Nanomedicines: Medicines Enabled by the Paracrine Transfer Effect.

ACS Nano

January 2025

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

In nanomedicine, the cellular export of nanomaterials has been less explored than uptake. Traditionally viewed in a negative light, recent findings highlight the potential of nanomedicine export to enhance therapeutic effects. This Perspective examines key pathways for export and how nanomaterial design affects removal rates.

View Article and Find Full Text PDF

Spherical nucleic acids (SNAs) usually suffer from an undesired protein corona and disrupt the function of nucleic acids (e.g., aptamer), thereby compromising recognition and response to proteins in the biological environment.

View Article and Find Full Text PDF

Spherical nucleic acids (SNAs) consist of DNA strands arranged radially and packed densely on the surface of nanoparticles. Due to their unique properties, which are not found in naturally occurring linear or circular DNA, SNAs have gained widespread attention in fields such as sensing, nanomedicine, and colloidal assembly. The rapidly evolving applications of SNAs have driven a modernization of their syntheses to meet different needs.

View Article and Find Full Text PDF

Specific Response Assembly of 3D Space-Confined DNA Nanoaggregates for Rapid and Sensitive Detection of DNA Methyltransferase.

Anal Chem

December 2024

MOE Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Chemistry and Chemical Engineering, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing 400715, P. R. China.

Rapid and sensitive detection of DNA adenine methyltransferase (Dam) activity is crucial for both research and clinical applications. Herein, we utilize two types of spherical nucleic acids (SNAs) to specific response assemble into 3D space-confined DNA nanoaggregates that enable the rapid and sensitive detection of Dam activity. The SNAs feature 3D order DNA scaffolds that serve as cores for anchoring signal hairpin probes (S-HPs) and target hairpin probes (T-HPs).

View Article and Find Full Text PDF

(1) Background: Drug-induced liver injury is a prevalent global health concern that necessitates urgent development of safe and effective treatment options for patients. Drug-carrying nanoparticles have garnered significant attention for dis-ease treatments due to their capacity to enhance drug solubility, provide drug protection, and prolong release duration, thereby improving drug bioavailability and increasing therapeutic efficacy. We initially present a nanostructured carrier incorporating glycyrrhetinic acid and transferrin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!