Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron overload (IO) is a common yet underappreciated finding in metabolic syndrome (MetS) patients. With the prevalence of MetS continuing to rise, it is imperative to further elucidate cellular mechanisms leading to metabolic dysfunction. Adiponectin has many beneficial effects and is a therapeutic target for the treatment of MetS and cardiovascular diseases. IO positively correlates with reduced circulating adiponectin levels yet the impact of IO on adiponectin action is unknown. Here, we established a model of IO in L6 skeletal muscle cells and found that IO-induced adiponectin resistance. This was shown via reduced p38 mitogen-activated protein kinase phosphorylation in response to the small molecule adiponectin receptor (AdipoR) agonist, AdipoRon, in presence of IO. This correlated with reduced messenger RNA and protein levels of AdipoR1 and its facilitative signaling binding partner, APPL1. IO caused phosphorylation, nuclear extrusion, and thus inhibition of FOXO1, a known transcription factor regulating AdipoR1 expression. The antioxidant N-acetyl cystine attenuated the production of reactive oxygen species (ROS) by IO, and blunted its effect on FOXO1 phosphorylation and removal from the nucleus, as well as subsequent adiponectin resistance. In conclusion, our study identifies a ROS/FOXO1/AdipoR1 axis as a cause of skeletal muscle adiponectin resistance in response to IO. This new knowledge provides insight into a cellular mechanism with potential relevance to disease pathophysiology in MetS patients with IO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.30240 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!