Background: The greatest hurdle to commercial marketing of fresh-cut fruits and vegetables is limited shelf life due to microbial hazards and quality deterioration. Atmospheric cold plasma (ACP) is an emerging non-thermal technology with significant potential to improve the safety and storability of fresh products. The objective of this study was to evaluate the effects of ACP, generated in sealed packaging, on the qualitative, metabolic and microbial stability of fresh-cut pears during simulated cold storage.

Results: ACP treatments were effective in inhibiting the growth of mesophilic aerobic bacteria, yeast and mold, particularly CP3 (65 kV, 1 min), which could prolong shelf life to the greatest extent. While decontamination was not always associated with an increase in plasma intensity. Moreover, at 65 kV for 1 min, ACP treatment had the potential to retard respiration, and maintain organoleptic properties and other quality attributes. Additionally, peroxidase and pectin methylesterase (PME) activities were reduced immediately after treatments. These effects were dependent on treatment voltage and time, while a subsequent recovery in activity was only observed for PME.

Conclusion: The results obtained from this study will contribute to an understanding of the effects of in-package ACP treatments on the storability and microbial safety of fresh-cut pears. This knowledge could be beneficial in reducing quality losses for fresh-cut pears and the preservation of other products. © 2021 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.11085DOI Listing

Publication Analysis

Top Keywords

fresh-cut pears
16
effects in-package
8
atmospheric cold
8
cold plasma
8
qualitative metabolic
8
metabolic microbial
8
microbial stability
8
stability fresh-cut
8
shelf life
8
acp treatments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!