Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present work investigates the targeting efficacy of a novel thiolated polymer-based nanocomposite reinforced with glycyrrhetinic acid (GA) and loaded with 5-fluorouracil in hepatocellular carcinoma (HCC). The thiolated polymers were synthesized by EDAC-mediated conjugation reactions and lyophilization. The nanoparticles were prepared by solvent diffusion and high-pressure homogenization method. The prepared nanocomposite was characterized by Fourier transform infrared (FTIR) radiation, x-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Pharmacological evaluation of the formulation was carried out on a rat model of diethylnitrosamine (DEN), and carbon tetrachloride (CCl)-induced HCC and MTT assay was carried out with HEP-G2 cell line. In silico studies were conducted to investigate the probable mechanistic pathway of the nanocomposite. FTIR and XRD analysis indicated the successful thiolation of the polymers and confirmed the formation of the nanocomposite without any incompatibilities. DLS, SEM/EDX and AFM characterization confirmed that the nanoparticles were within the nano-size range. MTT assay implied the cytotoxic nature of the nanocomposite against hepatic carcinoma cells. The in vivo study revealed that serum SGOT, SGPT, ALP, GGT and total bilirubin levels were significantly reduced, in comparison with disease control and the result was confirmed by histopathology studies. The results of the HPLC analysis of liver homogenate confirmed the liver targeting ability of the nanocomposite. In silico studies exhibited significant binding affinity of GA and thiolated Eudragit towards liver homolog receptor-1 (LRH-1) suggesting that the developed nanocomposite could be a potential material for the treatment of HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13346-020-00894-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!