Topical and transdermal delivery with diseased human skin: passive and iontophoretic delivery of hydrocortisone into psoriatic and eczematous skin.

Drug Deliv Transl Res

Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 30341, Atlanta, GA, USA.

Published: January 2022

Psoriasis and atopic dermatitis (eczema) are both common immune-mediated inflammatory skin diseases associated with changes in skin's stratum corneum lipid structure and barrier functionality. The present study aimed to investigate healthy, eczematous, and psoriatic excised human tissue for the effect of non-infectious skin diseases on skin characteristics (surface color, pH, transepidermal water loss, electrical resistance, and histology), as well as on permeation and retention profile of hydrocortisone. Further, differences in percutaneous absorption on application of iontophoresis on healthy and diseased skin were also investigated. Measurements of transepidermal water loss and electrical resistance showed a significant difference in psoriasis skin samples indicating a damaged barrier function. In vitro permeation studies on full-thickness human skin using vertical diffusion cells further confirmed these results as the drug amount retained in the psoriatic tissue was significantly higher when compared with the other groups. Despite no significant difference, the presence of the drug in the receptor chamber in both diseased groups can be concerning as it suggests the increased possibility of systemic absorption and adverse reactions associated with it in the use of topical corticosteroids. Application of anodal iontophoresis resulted in greater distribution of hydrocortisone into deeper layers of skin and the receptor chamber, in comparison to passive permeation. However, no significant differences were observed due to the healthy or diseased condition of skin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351627PMC
http://dx.doi.org/10.1007/s13346-021-00897-7DOI Listing

Publication Analysis

Top Keywords

skin
10
human skin
8
skin diseases
8
transepidermal water
8
water loss
8
loss electrical
8
electrical resistance
8
healthy diseased
8
receptor chamber
8
topical transdermal
4

Similar Publications

Background: Leprosy (Hansen's disease) is an infectious disease most common in resource-limited countries caused by the acid-fast bacilli Mycobacterium leprae and Mycobacterium lepromatosis that frequently affects the skin and peripheral nerves. Prompt diagnosis and treatment with multidrug therapy is crucial to reduce disease transmission and sequelae, which include nerve function impairment, ocular injury, and stigmatizing physical deformities. Traditional treatment of multibacillary leprosy consists of 12-24 months of multidrug therapy with dapsone, rifampin, and clofazimine.

View Article and Find Full Text PDF

Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.

View Article and Find Full Text PDF

Background: Mucocutaneous leishmaniasis (MCL) is a severe form of leishmaniasis causing chronic and destructive lesions. Accurate diagnosis is crucial for effective treatment. Traditional methods, such as the Montenegro skin test is delayed hypersensitivity test.

View Article and Find Full Text PDF

Background: Mutations in gamma-secretase complex (GSC) genes are associated with hidradenitis suppurativa (HS), and toll-like receptor (TLR) 2 is elevated in HS lesions. However, it remains unclear whether TLR2 is upregulated in the skin lesions of patients with HS with GSC gene variants, and the role of its upregulation in the pathogenesis of this disease are unknown.

Objective: To investigate the role of TLR2 upregulation in NCSTN and PSENEN knockdown keratinocytes.

View Article and Find Full Text PDF

Background: Effective staff-to-staff and patient-provider communication in the Emergency Department (ED) is essential for safe, quality care. Routine wearing of Personal-Protective-Equipment (PPE) has introduced new challenges to communication. We aimed to understand the perspectives of ED staff about communicating while wearing PPE, and to identify factors contributing to communication success, breakdown, and repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!