In this paper, a new possibility of fabricating a metal lattice structure with a continuous rod is demonstrated. A multi-layer, periodic, and aperiodic lattice structure can be manufactured with a continuous thin rod by bending it with a repetitive pattern. However, joining their nodes are challenging and an important problem to solve. This paper is investigating the joining of nodes in a loose lattice structure by delivering materials through the dipping process. Both liquid state (epoxy) and solid-state (inorganic particles) joining agents are considered for polymer-metal and metal-metal bonding, respectively. Liquid Carrier Systems (LCS) are designed considering their rheological behavior. We found 40% solid loading with the liquid carrier system provides sufficient solid particles transfer at dipping and join the lattice node using transient liquid phase bonding (TLP). 3D metal lattice structures are constructed, and their mechanical properties are investigated. The lattice structure shows comparable strength even with smaller relative density (< 10%). The strength and elastic modulus of all the fabricated samples decreases with the increase in cell size, which is consistent with the traditional wisdom.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801606 | PMC |
http://dx.doi.org/10.1038/s41598-020-79826-6 | DOI Listing |
Phys Rev Lett
December 2024
National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575.
By virtue of being atomically thin, the electronic properties of heterostructures built from two-dimensional materials are strongly influenced by atomic relaxation. The atomic layers behave as flexible membranes rather than rigid crystals. Here we develop an analytical theory of lattice relaxation in twisted moiré materials.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.
Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Physics, Facility of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
The influence of variations in indium concentration and temperature on threshold current density (J) in In Ga As/GaAs ( = 0, 0.8 and 0.16) quantum dot (QD) laser diodes - synthesized via molecular beam epitaxy (MBE) with three distinct indium concentrations on GaAs (001) substrates - was meticulously examined.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 1774-15875, Tehran, Iran.
The potential of epoxy-graphene oxide (GO) nanocomposites to improve the mechanical characteristics of conventional epoxy resins is causing them to gain prominence. This makes them appropriate for advanced engineering applications, including structural materials, automotive, and aerospace. This study aimed to develop an epoxy/GO composite with improved mechanical properties through synthesizing epoxy/GO samples with varying GO content (from 0.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Purpose: This study aimed to provide quantitative information for implementing Lattice radiotherapy (LRT) using a medical linear accelerator equipped with the Millennium 120 multi-leaf collimator (MLC). The research systematically evaluated the impact of varying vertex diameters and separations on dose distribution, peak-to-valley dose ratio (PVDR), and normal tissue dose.
Methods: A cylindrical Virtual Water™ phantom was used to create LRT treatments using the Eclipse version 16.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!