The present study represents a formulation of nanocurcumin based hybrid virosomes (NC-virosome) to deliver drugs at targeted sites. Curcumin is a bioactive component derived from Curcuma longa and well-known for its medicinal property, but it exhibits poor solubility and rapid metabolism, which led to low bioavailability and hence limits its applications. Nanocurcumin was prepared to increase the aqueous solubility and to overcome all the limitations associated with curcumin. Influenza virosomes were prepared by solubilization of the viral membrane with 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC). During membrane reconstitution, the hydrophilic nanocurcumin was added to the solvent system, followed by overnight dialysis to obtain NC-virosomes. The same was characterized using a transmission electron microscope (TEM) and scanning electron microscope (SEM), MTT assay was used to evaluate it's in vitro-cytotoxicity using MDA-MB231 and Mesenchyme stem cells (MSCs). The results showed NC-virosomes has spherical morphology with size ranging between 60 and 90 nm. It showed 82.6% drug encapsulation efficiency. The viability of MDA-MB231 cells was significantly inhibited by NC-virosome in a concentration-dependent manner at a specific time. The IC50 for nanocurcumin and NC-virosome was 79.49 and 54.23 µg/ml, respectively. The site-specific drug-targeting, high efficacy and non- toxicity of NC-virosomes proves its future potential as drug delivery vehicles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801424 | PMC |
http://dx.doi.org/10.1038/s41598-020-79631-1 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Department of Cardiology, Yantaishan Hospital, Yantai, Shandong, China.
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Curcumin has been observed to significantly reduce pathological processes associated with MI. Its clinical application is limited due to its low bioavailability, rapid degradation, and poor solubility.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
Cancers still globally endanger millions of people yearly; the incidences/mortalities of colorectal cancers are particularly increasing. The natural nanoparticles (NPs) and marine biopolymers were anticipated to provide effectual safe significances for managing cancers. The transformation of curcumin to nano-curcumin (NCur) was conducted with gum Arabic.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Restorative Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
Hum Exp Toxicol
October 2024
Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran.
Discov Oncol
October 2024
Student Research Committee, Kurdistan University of Medical Sciences, P.O.Box: 66135-756, Sanandaj, Iran.
Background: Curcumin, a compound in turmeric, shows potential in cancer treatment but is hindered by low bioavailability and solubility. Nanocurcumin, enhanced through nanotechnology, addresses these limitations, offering potential in oncological applications. This review systematically examines the efficacy, bioavailability, and safety of nanocurcumin in cancer treatment, collating data from in vitro, in vivo, and clinical studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!