Oxylipins are implicated as communication signals in tomato-root-knot nematode (Meloidogyne javanica) interaction.

Sci Rep

Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel.

Published: January 2021

Throughout infection, plant-parasitic nematodes activate a complex host defense response that will regulate their development and aggressiveness. Oxylipins-lipophilic signaling molecules-are part of this complex, performing a fundamental role in regulating plant development and immunity. At the same time, the sedentary root-knot nematode Meloidogyne spp. secretes numerous effectors that play key roles during invasion and migration, supporting construction and maintenance of nematodes' feeding sites. Herein, comprehensive oxylipin profiling of tomato roots, performed using LC-MS/MS, indicated strong and early responses of many oxylipins following root-knot nematode infection. To identify genes that might respond to the lipidomic defense pathway mediated through oxylipins, RNA-Seq was performed by exposing Meloidogyne javanica second-stage juveniles to tomato protoplasts and the oxylipin 9-HOT, one of the early-induced oxylipins in tomato roots upon nematode infection. A total of 7512 differentially expressed genes were identified. To target putative effectors, we sought differentially expressed genes carrying a predicted secretion signal peptide. Among these, several were homologous with known effectors in other nematode species; other unknown, potentially secreted proteins may have a role as root-knot nematode effectors that are induced by plant lipid signals. These include effectors associated with distortion of the plant immune response or manipulating signal transduction mediated by lipid signals. Other effectors are implicated in cell wall degradation or ROS detoxification at the plant-nematode interface. Being an integral part of the plant's defense response, oxylipins might be placed as important signaling molecules underlying nematode parasitism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801703PMC
http://dx.doi.org/10.1038/s41598-020-79432-6DOI Listing

Publication Analysis

Top Keywords

root-knot nematode
12
nematode meloidogyne
8
meloidogyne javanica
8
defense response
8
tomato roots
8
nematode infection
8
differentially expressed
8
expressed genes
8
lipid signals
8
nematode
7

Similar Publications

Aim: Bacillus subtilis is usually found in soil, and their biocontrol and plant growth promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic Bacillus subtilis from seeds is limited. In the present study, Bacillus subtilis EVCu15 strain isolated from the seeds of Vasconcellea cundinamarcensis (mountain papaya) was subjected to whole genome sequencing, and detailed molecular and functional characterization.

View Article and Find Full Text PDF

The primary aim of this research was to study the effectiveness of various strains of antagonist microorganisms and biological preparations against , in addition to their impact on the quality of tomato fruits and crop structure. Four microorganism strains and three registered environmentally safe nematicides were used in the experiment presented herein. The results showed that the strains F-22BK/6 and F-22BK/4 had the greatest biological efficacy, reducing the number of galls on tomato plants by 91.

View Article and Find Full Text PDF

Bioactive Secondary Metabolites from Against .

Microorganisms

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.

Root-knot nematodes (RKNs) are pathogens that endanger a wide range of crops and cause serious global agricultural losses. In this study, we investigated metabolites of the endoparasitic fungus YMF1.01751, with the expectation of discovering valuable biocontrol compounds.

View Article and Find Full Text PDF

Root-knot nematodes Meloidogyne incognita are sedentary endoparasites with a broad host range which includes economically important medicinal plant species including Turmeric. Turmeric (Curcuma longa) is an important medicinal and aromatic plant (MAPs) grown at Baruasagar town in Jhansi district where root-knot nematodes are a major threat in production fields. The invasion of M.

View Article and Find Full Text PDF

Root-knot nematodes (Meloidogyne spp.) are significant pests that cause considerable damage to crops, prompting a need for sustainable control methods. This study evaluated the nematicidal potential of fungal culture filtrates and botanicals as eco-friendly alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!