Imbalance of macrophage polarization plays an indispensable role in acute lung injury (ALI), which is considered as a promising target. Matrix metalloproteinase-9 (MMP-9) is expressed in the macrophage, and has a pivotal role in secreting inflammatory cytokines. We reported that saquinavir (SQV), a first-generation human immunodeficiency virus-protease inhibitor, restricted exaggerated inflammatory response. However, whether MMP-9 could regulate macrophage polarization and inhibit by SQV is still unknown. We focused on the important role of macrophage polarization in CLP (cecal ligation puncture)-mediated ALI and determined the ability of SQV to maintain M2 over M1 phenotype partially through the inhibition of MMP-9. We also performed a limited clinical study to determine if MMP-9 is a biomarker of sepsis. Lipopolysaccharide (LPS) increased MMP-9 expression and recombinant MMP-9 (rMMP-9) exacerbated LPS-mediated M1 switching. Small interfering RNA to MMP-9 inhibited LPS-mediated M1 phenotype and SQV inhibition of this switching was reversed with rMMP-9, suggesting an important role for MMP-9 in mediating LPS-induced M1 phenotype. MMP-9 messenger RNA levels in peripheral blood mononuclear cells of these 14 patients correlated with their clinical assessment. There was a significant dose-dependent decrease in mortality and ALI after CLP with SQV. SQV significantly inhibited LPS-mediated M1 phenotype and increased M2 phenotype in cultured RAW 264.7 and primary murine bone marrow-derived macrophages as well as lung macrophages from CLP-treated mice. This study supports an important role for MMP-9 in macrophage phenotypic switching and suggests that SQV-mediated inhibition of MMP-9 may be involved in suppressing ALI during systemic sepsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7798387 | PMC |
http://dx.doi.org/10.1038/s41419-020-03320-0 | DOI Listing |
Am Soc Clin Oncol Educ Book
January 2025
Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
Cell-based therapies have become integral to the routine clinical management of hematologic malignancies. Tumor-infiltrating lymphocyte (TIL) therapy has demonstrated efficacy in immunogenic solid tumors, such as melanoma. However, in the GI field, evidence supporting the clinical success of cell-based therapies is still awaited.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation.
View Article and Find Full Text PDFSci Adv
January 2025
School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
The cytokine interleukin-10 (IL-10) limits the immune response and promotes resolution of acute inflammation. Because of its immunosuppressive effects, IL-10 up-regulation is a common feature of tumor progression and metastasis. Recently, IL-10 regulation has been shown to depend on mitochondria and redox-sensitive signals.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China.
Ulcerative colitis (UC) remains an intractable and relapsing disease featured by intestinal inflammation. The anti-UC activity of Akkermansia muciniphila (AKK), an intestinal microorganism, has been widely investigated. The current work is to explore the impacts of AKK on UC and its possible reaction mechanism.
View Article and Find Full Text PDFImmunotherapy has elicited significant improvements in outcomes for patients with several tumor types. However, the immunosuppressive microenvironment in glioblastoma restricts the therapeutic efficacy of immune checkpoint blockade (ICB). In this study, we investigated which components of the immune microenvironment contribute to ICB failure in glioblastoma to elucidate the underlying causes of immunotherapeutic resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!