The HIV-1 gp41 N-heptad repeat (NHR) region of the prehairpin intermediate, which is transiently exposed during HIV-1 viral membrane fusion, is a validated clinical target in humans and is inhibited by the Food and Drug Administration (FDA)-approved drug enfuvirtide. However, vaccine candidates targeting the NHR have yielded only modest neutralization activities in animals; this inhibition has been largely restricted to tier-1 viruses, which are most sensitive to neutralization by sera from HIV-1-infected individuals. Here, we show that the neutralization activity of the well-characterized NHR-targeting antibody D5 is potentiated >5,000-fold in TZM-bl cells expressing FcγRI compared with those without, resulting in neutralization of many tier-2 viruses (which are less susceptible to neutralization by sera from HIV-1-infected individuals and are the target of current antibody-based vaccine efforts). Further, antisera from guinea pigs immunized with the NHR-based vaccine candidate (ccIZN36) neutralized tier-2 viruses from multiple clades in an FcγRI-dependent manner. As FcγRI is expressed on macrophages and dendritic cells, which are present at mucosal surfaces and are implicated in the early establishment of HIV-1 infection following sexual transmission, these results may be important in the development of a prophylactic HIV-1 vaccine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826338PMC
http://dx.doi.org/10.1073/pnas.2018027118DOI Listing

Publication Analysis

Top Keywords

gp41 n-heptad
8
n-heptad repeat
8
neutralization sera
8
sera hiv-1-infected
8
hiv-1-infected individuals
8
tier-2 viruses
8
neutralization
6
hiv-1
5
high-affinity immunoglobulin
4
immunoglobulin receptor
4

Similar Publications

Structure and Interactions of HIV-1 gp41 CHR-NHR Reverse Hairpin Constructs Reveal Molecular Determinants of Antiviral Activity.

J Mol Biol

August 2024

Department of Foundational Biomedical Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA. Electronic address:

Engineered reverse hairpin constructs containing a partial C-heptad repeat (CHR) sequence followed by a short loop and full-length N-heptad repeat (NHR) were previously shown to form trimers in solution and to be nanomolar inhibitors of HIV-1 Env mediated fusion. Their target is the in situ gp41 fusion intermediate, and they have similar potency to other previously reported NHR trimers. However, their design implies that the NHR is partially covered by CHR, which would be expected to limit potency.

View Article and Find Full Text PDF
Article Synopsis
  • Research on HIV-1 vaccines is focusing on conserved structural elements to target broadly neutralizing antibodies, particularly the D5 antibody which binds to a critical area on the viral gp41 protein.
  • Studies with different lengths of N-heptad repeat (NHR) peptides show that longer peptides can produce higher levels of neutralizing antibodies, indicating potential additional neutralizing areas beyond the D5 pocket.
  • The development of stabilized trimeric 51-mer peptides has shown promise in enhancing the immune response, resulting in better neutralization of HIV-1 compared to shorter peptides, highlighting the importance of peptide design in vaccine effectiveness.
View Article and Find Full Text PDF

Structure-guided stabilization improves the ability of the HIV-1 gp41 hydrophobic pocket to elicit neutralizing antibodies.

J Biol Chem

April 2023

Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA. Electronic address:

The hydrophobic pocket found in the N-heptad repeat (NHR) region of HIV-1 gp41 is a highly conserved epitope that is the target of various HIV-1-neutralizing monoclonal antibodies. Although the high conservation of the pocket makes it an attractive vaccine candidate, it has been challenging to elicit potent anti-NHR antibodies via immunization. Here, we solved a high-resolution structure of the NHR mimetic IQN17, and, consistent with previous ligand-bound gp41 pocket structures, we observed remarkable conformational plasticity of the pocket.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bNAbs) against the membrane-proximal external region (MPER) of the gp41 component of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) are characterized by long, hydrophobic, heavy chain complementarity-determining region 3s (HCDR3s) that interact with the MPER and some viral membrane lipids to achieve increased local concentrations. Here, we show that increasing the local concentration of MPER-directed bNAbs at the cell surface via binding to the high-affinity Fc receptor FcγRI potentiates their ability to prevent viral entry in a manner analogous to the previously reported observation wherein the lipid-binding activity of MPER bNAbs increases their concentration at the viral surface membrane. However, binding of MPER-directed bNAb 10E8 to FcγRI abolishes the neutralization synergy that is seen with the N-heptad repeat (NHR)-targeting antibody D5_AR and NHR-targeting small molecule enfuvirtide (T20), possibly due to decreased accessibility of the NHR in the FcγRI-10E8-MPER complex.

View Article and Find Full Text PDF

HIV Transmembrane Glycoprotein Conserved Domains and Genetic Markers Across HIV-1 and HIV-2 Variants.

Front Microbiol

May 2022

HIV-1 Molecular Epidemiology Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Microbiology Department, Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain.

HIV envelope transmembrane glycoproteins gp41 (HIV-1) and gp36 (HIV-2) present high variability and play a key role in the HIV-host cell membrane's fusion, as a target for human broadly neutralizing antibodies (bnAbs) and drugs. Thus, a better knowledge of amino acid (aa) conservation across structural domains and HIV variants can help to identify conserved targets to direct new therapeutic and diagnostic strategies. All available gp41/gp36 nucleotide sequences were downloaded from Los Alamos National Laboratory (LANL) HIV Sequence Database, selecting 17,078 sequences ascribed to HIV-1 and HIV-2 variants with ≥3 sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!