Background: Assessment of risks of illnesses has been an important part of medicine for decades. We now have hundreds of 'risk calculators' for illnesses, including brain disorders, and these calculators are continually improving as more diverse measures are collected on larger samples.
Methods: We first replicated an existing psychosis risk calculator and then used our own sample to develop a similar calculator for use in recruiting 'psychosis risk' enriched community samples. We assessed 632 participants age 8-21 (52% female; 48% Black) from a community sample with longitudinal data on neurocognitive, clinical, medical, and environmental variables. We used this information to predict psychosis spectrum (PS) status in the future. We selected variables based on lasso, random forest, and statistical inference relief; and predicted future PS using ridge regression, random forest, and support vector machines.
Results: Cross-validated prediction diagnostics were obtained by building and testing models in randomly selected sub-samples of the data, resulting in a distribution of the diagnostics; we report the mean. The strongest predictors of later PS status were the Children's Global Assessment Scale; delusions of predicting the future or having one's thoughts/actions controlled; and the percent married in one's neighborhood. Random forest followed by ridge regression was most accurate, with a cross-validated area under the curve (AUC) of 0.67. Adjustment of the model including only six variables reached an AUC of 0.70.
Conclusions: Results support the potential application of risk calculators for screening and identification of at-risk community youth in prospective investigations of developmental trajectories of the PS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273212 | PMC |
http://dx.doi.org/10.1017/S0033291720005231 | DOI Listing |
Exp Biol Med (Maywood)
December 2024
Department of Pediatric Surgery, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with a poor prognosis. Its non-specific clinical symptoms make accurate prediction of disease progression challenging. This study aimed to develop molecular-level prognostic models to personalize treatment strategies for IPF patients.
View Article and Find Full Text PDFGiant cell arteritis (GCA), a systemic vasculitis affecting large and medium-sized arteries, poses significant diagnostic and management challenges, particularly in preventing irreversible complications like vision loss. Recent advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL), offer promising solutions to enhance diagnostic accuracy and optimize treatment strategies for GCA. This systematic review, conducted according to the PRISMA 2020 guidelines, synthesizes existing literature on AI applications in GCA care, with a focus on diagnostic accuracy, treatment outcomes, and predictive modeling.
View Article and Find Full Text PDFJAMIA Open
February 2025
Artificial Intelligence (AI) for Health Institute (AIHealth), Washington University in St Louis, St Louis, MO 63130, United States.
Objective: Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Department of Rehabilitation Medicine, University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
Introduction: Parkinson's disease (PD) is characterized by muscle stiffness, bradykinesia, and balance disorders, significantly impairing the quality of life for affected patients. While motion pose estimation and gait analysis can aid in early diagnosis and timely intervention, clinical practice currently lacks objective and accurate tools for gait analysis.
Methods: This study proposes a multi-level 3D pose estimation framework for PD patients, integrating monocular video with Transformer and Graph Convolutional Network (GCN) techniques.
The integration of conventional omics data such as genomics and transcriptomics data into artificial intelligence models has advanced significantly in recent years; however, their low applicability in clinical contexts, due to the high complexity of models, has been limited in their direct use inpatients. We integrated classic omics, including DNA mutation and RNA gene expression, added a novel focus on promising omics methods based on A>I(G) RNA editing, and developed a drug response prediction model. We analyzed 104 patients from the Breast Cancer Genome-Guided Therapy Study (NCT02022202).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!