We present the development of CyBy, a versatile framework for chemical data management written in purely functional style in Scala, a modern multi-paradigm programming language. Together with the core libraries we provide a fully functional example implementation of a HTTP server together with a single page web client with powerful querying and visualization capabilities, providing essential functionality for people working in the field of organic and medicinal chemistry. The main focus of CyBy are the diverse needs of different research groups in the field and therefore the flexibility required from the underlying data model. Techniques for writing type level specifications giving strong guarantees about the correctness of the implementation are described, together with the resulting gain in confidence during refactoring. Finally we talk about the advantages of using a single code base from which the server, the client and the software's documentation pages are being generated. We conclude with a comparison with existing open source solutions. All code described in this article is published under version 3 of the GNU General Public License and available from GitHub including an example implementation of both backend and frontend together with documentation how to download and compile the software (available at https://github.com/stefan-hoeck/cyby2).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937922PMC
http://dx.doi.org/10.1186/s13321-019-0403-2DOI Listing

Publication Analysis

Top Keywords

purely functional
8
framework chemical
8
chemical data
8
data management
8
example implementation
8
cyby typed
4
typed purely
4
functional framework
4
management development
4
development cyby
4

Similar Publications

Kohn-Sham inversion for open-shell systems.

J Chem Phys

January 2025

Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.

Methods based on density-functional theory usually treat open-shell atoms and molecules within the spin-unrestricted Kohn-Sham (KS) formalism, which breaks symmetries in real and spin space. Symmetry breaking is possible because the KS Hamiltonian operator does not need to exhibit the full symmetry of the physical Hamiltonian operator, but only the symmetry of the spin density, which is generally lower. Symmetry breaking leads to spin contamination and prevents a proper classification of the KS wave function with respect to the symmetries of the physical electron system.

View Article and Find Full Text PDF

Human performance in psychophysical detection and discrimination tasks is limited by inner noise. It is unclear to what extent this inner noise arises from early noise (e.g.

View Article and Find Full Text PDF

Background: Carpal Tunnel Syndrome (CTS) is the most common entrapment neuropathy, characterised by compression of the median nerve at the wrist. Traditional understanding views CTS as a distal compression issue, but recent evidence suggests potential proximal involvement.

Purpose: This study aimed to assess the prevalence of proximal median nerve conduction velocity (CV) slowing in CTS patients and examine its association with CTS severity.

View Article and Find Full Text PDF

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

Are oligodendrocytes bystanders or drivers of Parkinson's disease pathology?

PLoS Biol

January 2025

Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.

The major pathological feature of Parkinson 's disease (PD), the second most common neurodegenerative disease and most common movement disorder, is the predominant degeneration of dopaminergic neurons in the substantia nigra, a part of the midbrain. Despite decades of research, the molecular mechanisms of the origin of the disease remain unknown. While the disease was initially viewed as a purely neuronal disorder, results from single-cell transcriptomics have suggested that oligodendrocytes may play an important role in the early stages of Parkinson's.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!