Background: Computational modelling of cell biological processes is a frequently used technique to analyse the underlying mechanisms and to generally understand the behaviour of these processes in the context of a pathway, network or even the whole cell. The most common technique in this context is the usage of ordinary differential equations that describe the kinetics of the relevant processes in mechanistic detail. Here, it is usually assumed that the content of the cell is well-stirred and thus homogeneous - which is of course an over-simplification, but often worked in the past. However, many processes happen at membranes and thus not in 3D, but in 2D. The scaling of the rates of these processes poses a special problem, if volumes of compartments are changed. They will typically scale with an area, but not with the volume of the involved compartment. However, commonly, this is neglected when setting up models and/or volume scaling also sometimes automatically happens when using modelling software in the field.
Results: Here, we investigate generic as well as specific, realistic cases to find out, how strong the impact of the wrong scaling is for the outcome of simulations. We show that the importance of correct area scaling depends on the architecture of the reaction site and its changes upon volume alterations and it is hard to foresee, if it has a significant impact or not just by looking at the original model set-up. Moreover, scaled rates might exhibit more or less control over the behaviour of the system and therefore, accordingly, incorrect scaling will have more or less influence.
Conclusions: Working with multi-compartment reactions requires a careful consideration of the correct scaling of the rates when changing the volumes of the involved compartments. The error following incorrect scaling - often done by scaling with the volume of the respective compartments can lead to significant aberrations of model behaviour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7798250 | PMC |
http://dx.doi.org/10.1186/s12859-020-03913-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!