Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The C2-WW-HECT-domain E3 ubiquitin ligase SMURF2 emerges as an important regulator of diverse cellular processes. To date, SMURF2-specific modulators were not developed. Here, we generated and investigated a set of SMURF2-targeting synthetic peptides and peptidomimetics designed to stimulate SMURF2's autoubiquitination and turnover via a disruption of the inhibitory intramolecular interaction between its C2 and HECT domains. The results revealed the effects of these molecules both and at the nanomolar concentration range. Moreover, the data showed that targeting of SMURF2 with either these modifiers or -specific shRNAs could accelerate cell growth in a cell-context-dependent manner. Intriguingly, a concomitant cell treatment with a selected SMURF2-targeting compound and the DNA-damaging drug etoposide markedly increased the cytotoxicity produced by this drug in growing cells. Altogether, these findings demonstrate that SMURF2 can be druggable through its self-destructive autoubiquitination, and inactivation of SMURF2 might be used to affect cell sensitivity to certain anticancer drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808752 | PMC |
http://dx.doi.org/10.1080/14756366.2020.1871337 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!