During early lactation in dairy cows, metabolic processes are adopted to provide energy and nutrients for the synthesis of milk compounds. High milk production potential includes sudden changes in energy metabolism (negative energy balance (NEB)) that can induce uncontrolled lipomobilization and high blood free fatty acid (FFA) levels. Destabilization of cows' energy may interfere with endocrine homeostasis, such as the secretion of leptin, a co-regulator of the appetite center. Therefore, it is important to analyze the physiological aspects of the maintenance of energy homeostasis in various dairy breeds. Usually it is crucial for the health of cows, influences the production cycle and lifetime yield, and determines the profitability of production and milk quality. The aim of this study was to analyze the energy metabolism of selected breed groups of cows and its variability in different stages of early lactation. The analysis was performed using data on the following parameters: body condition score (BCS), fatty acid (FA) fractions, basic milk constituents, and serum parameters (BHBA, glucose, and leptin). These results were analyzed in relation to parameters of energy metabolism during the stage up to the peak of lactation. An earlier peak of lactation was shown to be conducive to an increase in the content of non-esterified fatty acids (NEFAs) and of casein and κ-casein. During the study period, parameters characterizing the maintenance of energy homeostasis were usually lower in the Simmental and Black-and-White Lowland cows. Compared to the group with the highest production, their yield was from 2.8 to 4.7 kg lower, but the milk had a more beneficial fatty acid profile and nutrient content, determining suitability for cheese making. At the same time, they had lower levels of NEFAs and β-hydroxybutyrate in the blood, which indicates less spontaneous lipolysis of fat reserves. Concentrations of the appetite regulator leptin in the blood were correlated negatively ( ≤ 0.05) with the glucose concentration (-0.259) and positively with NEFA (0.416). The level of NEFAs was at the same time positively correlated with the content of saturated fatty acids in the milk (0.282-0.652; ≤ 0.05). These results contribute to our knowledge of the effect of production intensity on the maintenance of homeostasis up to the peak of lactation in dairy breeds with differing production potential. In practice, this may increase the possibilities of improving milk quality and the profitability of production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827615PMC
http://dx.doi.org/10.3390/ani11010112DOI Listing

Publication Analysis

Top Keywords

energy metabolism
16
peak lactation
16
fatty acids
12
fatty acid
12
energy
9
milk
8
acids milk
8
early lactation
8
lactation dairy
8
production potential
8

Similar Publications

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

Regulation of anaplerotic enzymes by melatonin enhances resilience to cadmium toxicity in Vigna radiata (L.) R. Wilczek.

Plant Physiol Biochem

January 2025

Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.

Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.

View Article and Find Full Text PDF

Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.

View Article and Find Full Text PDF

The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.

View Article and Find Full Text PDF

Purpose: To assess physiological metrics during the use of a commercially available bilateral active ankle exoskeleton during a challenging military-relevant task and if use of the exoskeleton during this task influences: metabolic load, physiological measures or rate of perceived exertion.

Methods: Nine healthy volunteers (5M, 4F) completed this randomized cross-over design trial, with a baseline visit and two randomized test sessions (with/without the exoskeleton). Variables included impact on time to exhaustion during walking on a treadmill at varying speeds and gradients (0-15%) at 26.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!