There are several studies that sevoflurane could enhance proliferation of cancer cells, while others suggest no effect on clinical outcome. We conducted in vivo and in vitro experiments to investigate the effects of sevoflurane, a volatile anesthetic, on proliferation and outcomes of Lewis lung carcinoma (LLC) cells. A total of 37 mice were injected with LLC cells to compare the tumor size and survival of the sevoflurane exposed group (sevo group) and control group. The sevo group was exposed to 2% sevoflurane and 4 L/min of oxygen for 1 h per day 3 times per week, and the control group was exposed only to 4 L/min of oxygen. In vitro study, 12 plates incubated with LCC cells. 6 plates were exposed to 2% sevoflurane for 1 hr/day for 3 days and 6 plates were not exposed, and cell proliferation was compared after 3 days. There were no significant differences in survival or tumor size between mice exposed to sevoflurane and control mice (survival: 29.06 ± 4.45 vs. 28.76 ± 3.75, = 0.836; tumor size: 0.75 (0.41-1.02) vs. 0.49 (0.11-0.79), = 0.153). However, in vitro study, the proliferation of LLC cells exposed to sevoflurane increased by 9.2% compared to the control group ( = 0.018). Sevoflurane (2 vol%) exposure could promote proliferation of LLC cells in vitro environment, but may not affect proliferation of LLC cells in vivo environment. These results suggest that in vitro studies on the effects of anesthetics on cancer may differ from those of in vivo or clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825752PMC
http://dx.doi.org/10.3390/medicina57010045DOI Listing

Publication Analysis

Top Keywords

llc cells
20
exposed sevoflurane
16
tumor size
12
control group
12
proliferation llc
12
effects sevoflurane
8
lewis lung
8
lung carcinoma
8
cell proliferation
8
vivo vitro
8

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

AviadoBio, London, London, United Kingdom.

Background: Frontotemporal dementia (FTD) presents with a change in personality, behaviour and language and is the second most common cause of young-onset dementia after Alzheimer's disease. Loss of function mutations in GRN, encoding progranulin (PGRN), causes FTD in the heterozygous state, accounting for 5-10% of all FTD cases. PGRN is essential for normal lysosomal function and neuronal survival.

View Article and Find Full Text PDF

Bone marrow adipose tissue (BMAT) has garnered significant attention due to its critical roles in leukemia pathogenesis, cancer metastasis, and bone marrow failure. BMAT is a metabolically active, distinct tissue that differs from other fat depots. Marrow adipocytes, closely interacting with hematopoietic stem/progenitor cells and osteoblasts, play a pivotal role in regulating their functions.

View Article and Find Full Text PDF

GT103 is a first-in-class, fully human, IgG3 monoclonal antibody targeting complement factor H that kills tumor cells and promotes anti-cancer immunity in preclinical models. We conducted a first-in-human phase 1b study dose escalation trial of GT103 in refractory non-small cell lung cancer to assess the safety of GT103 (NCT04314089). Dose escalation was performed using a "3 + 3" schema with primary objectives of determining safety, tolerability, PK profile and maximum tolerated dose (MTD) of GT103.

View Article and Find Full Text PDF

Liver-specific gene PGRMC1 blocks c-Myc-induced hepatocarcinogenesis through ER stress-independent PERK activation.

Nat Commun

January 2025

The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Roles of liver-specific genes (LSGs) in tumor initiation and progression are rarely explored in hepatocellular carcinoma (HCC). Here we show that LSGs are generally downregulated in HCC tumor tissues compared to non-HCC liver tissues, and low-LSG HCCs show poor prognosis and the activated c-Myc pathway. Among the c-Myc- and patient prognosis-associated LSGs, PGRMC1 significantly blocks c-Myc-induced orthotopic HCC formation.

View Article and Find Full Text PDF

Objective: Extracellular vesicles (EVs) derived from regenerative mesenchymal stem cells might safely treat traumatic brain injury (TBI). We evaluated the safety and efficacy of a human bone marrow derived mesenchymal stem cell EVs (hBM-MSC EV) investigational product (IP) in a patient with severe TBI.

Design: A single case study employing an IP with a strong safety profile in over 200 patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!