Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hand gesture recognition (HGR) takes a central role in human-computer interaction, covering a wide range of applications in the automotive sector, consumer electronics, home automation, and others. In recent years, accurate and efficient deep learning models have been proposed for real-time applications. However, the most accurate approaches tend to employ multiple modalities derived from RGB input frames, such as optical flow. This practice limits real-time performance due to intense extra computational cost. In this paper, we avoid the optical flow computation by proposing a real-time hand gesture recognition method based on RGB frames combined with hand segmentation masks. We employ a light-weight semantic segmentation method (FASSD-Net) to boost the accuracy of two efficient HGR methods: Temporal Segment Networks (TSN) and Temporal Shift Modules (TSM). We demonstrate the efficiency of the proposal on our IPN Hand dataset, which includes thirteen different gestures focused on interaction with touchless screens. The experimental results show that our approach significantly overcomes the accuracy of the original TSN and TSM algorithms by keeping real-time performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825741 | PMC |
http://dx.doi.org/10.3390/s21020356 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!