Currently, for seemingly every type of cancer, dysregulated levels of non-coding RNAs (ncRNAs) are reported and non-coding transcripts are expected to be the next class of diagnostic and therapeutic tools in oncology. Recently, alterations to the ncRNAs transcriptome have emerged as a novel hallmark of cancer. Historically, ncRNAs were characterized mainly as regulators and little attention was paid to the mechanisms that regulate them. The role of modifications, which can control the function of ncRNAs post-transcriptionally, only recently began to emerge. Typically, these modifications can be divided into reversible (i.e., chemical modifications: mC, hmC, mA, mA, and pseudouridine) and non-reversible (i.e., editing: ADAR dependent, APOBEC dependent and ADAR/APOBEC independent). The first research papers showed that levels of these modifications are altered in cancer and can be part of the tumorigenic process. Hence, the aim of this review paper is to describe the most common regulatory modifications (editing and chemical modifications) of the traditionally considered "non-functional" ncRNAs (i.e., microRNAs, long non-coding RNAs and circular RNAs) in the context of malignant disease. We consider that only by understanding this extra regulatory layer is it possible to translate the knowledge about ncRNAs and their modifications into clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827606 | PMC |
http://dx.doi.org/10.3390/ijms22020581 | DOI Listing |
Nanoscale Horiz
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
Coordinating the droplet capture, transport, and shedding processes during fog collection to achieve efficient fog collection is a major challenge. In this study, a copper mesh with different wettability was prepared by chemical etching and thiol modification. The Cu(OH) needle structure on the surface of the samples was characterized by FE-SEM and EDS tests, and the surface of the samples was chemically analyzed by infrared and XPS analyses.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
A variety of α-arylated sulfoxonium ylides could be facilely synthesized in modest to high yields through α-arylation of sulfoxonium ylides with aryl fluorosulfates C-O bond functionalization under palladium catalysis. Reactions using readily available and bench-stable aryl fluorosulfates as effective and appealing arylating agents showed both good substrate scope and broad functionality tolerance. Important functional groups such as nitro, cyano, formyl, acetyl, methoxycarbonyl, trifluoromethoxy, fluoro, and chloro embedded in substrates remained intact during the course of the reaction, and could be subjected to downstream modification.
View Article and Find Full Text PDFSmall
January 2025
Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.
The propensity of zinc (Zn) to form irregular electrodeposits at liquid-solid interfaces emerges as a fundamental barrier to high-energy, rechargeable batteries that use zinc anodes. So far, tremendous efforts are devoted to tailoring interfaces, while atomic-scale reaction mechanisms and the related nanoscale strain at the electrochemical interface receive less attention. Here, the underlying atomic-scale reaction mechanisms and the associated nanoscale strain at the electrochemical alloy interface are investigate, using gold-zinc alloy protective layer as a model system.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China.
Using CO as the C1 source for N-formylation of amine is a crucial energy-storage pathway to address the greenhouse effect while generating high-value-added chemicals but is limited by the activation of inert molecules. Herein, a dual active site catalyst with high CO activation and dihydrogen dissociation capacity was fabricated by incorporating a Schiff base and Au nanoparticles (NPs) on silicon dioxide (SiO). The modification of the Schiff base not only provides an alkaline environment for CO absorption but also stabilizes Au NPs in a small and highly dispersed state, which regulates the electronic density of the metal for excellent H cleavage.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
Lanthanide-doped fluoride nanocrystals have emerged as promising tools in biomedicine, yet their applications are still limited by their low luminescence efficiency. Herein, we developed highly efficient lithium-based core-shell-shell (CSS) nanoprobes (NPs) featuring a rhombic active domain and a spherical inert protective shell. By introducing Yb as an energy transfer bridge and optimizing the CSS design, a remarkable 1643-fold enhancement in visible emission and a 33-fold increase in NIR emission are achieved compared to original nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!