In this manuscript, silver nanowire 3D random crossed-wire woodpile (3D-RCW) nanostructures were designed and prepared. The 3D-RCW provides rich "antenna" and "hot spot" effects that are responsive for surface-enhanced Raman scattering (SERS) effects and plasmon-enhanced fluorescence (PEF). The optimal construction mode for the 3D-RCW, based on the ratio of silver nanowire and control compound R6G, was explored and established for use in PEF and SERS analyses. We found that the RCW nanochip capable of emission and Raman-enhanced detections uses micro levels of analysis volumes. Consequently, and SERS and PEF of pesticides (thiram, carbaryl, paraquat, fipronil) were successfully measured and characterized, and their detection limits were within 5 μM~0.05 µM in 20 µL. We found that the designed 3D plasmon-enhanced platform cannot only collect the SERS of pesticides, but also enhance the fluorescence of a weak emitter (pesticides) by more than 1000-fold via excitation of the surface plasmon resonance, which can be used to extend the range of a fluorescence biosensor. More importantly, solid-state measurement using a 3D-RCW nanoplatform shows promising potential based on its dual applications in creating large SERS and PEF enhancements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827238PMC
http://dx.doi.org/10.3390/molecules26020281DOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
raman scattering
8
plasmon-enhanced fluorescence
8
silver nanowire
8
sers pef
8
sers
5
plasmonic crossed-wire
4
crossed-wire nanostructure
4
nanostructure surface-enhanced
4
scattering plasmon-enhanced
4

Similar Publications

Kan-AAE-driven synthetic SERS spectra generation method for Precise cancer identification.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China. Electronic address:

Surface-Enhanced Raman Spectroscopy (SERS) is gaining popularity in cancer detection studies because it offers a non-invasive and rapid approach. Label-free SERS detection techniques often needs machine learning, which depends on adequate data for training. The scarcity of blood serum samples from cancer patients, due to challenges in collection linked to confidentiality concerns and other restrictions, can result in model overfitting and poor generalization ability.

View Article and Find Full Text PDF

Beta - stimulant, that is, β - adrenergic stimulant, also known as β - agonists, is bioactive catecholamine compounds naturally produced in animals' adrenal medulla glands that induce relaxation in asthmatic airway smooth muscles upon inhalation while also temporarily boosting athletic alertness and alleviating fatigue. However, their potential for dependency poses health risks including unnoticed exacerbation leading to severe illness or fatality prompting their inclusion on WADA's prohibited substances list. Surface - enhanced Raman spectroscopy (SERS) offers a rapid, sensitive, and label - free means for identifying characteristic peaks associated with β - agonist compounds.

View Article and Find Full Text PDF

Glutathione serves as a common biomarkers in tumor diagnosis and treatment. The levels of its intracellular concentration permit detailed investigation of the tumor microenvironment. However, low polarization and weak Raman scattering cross-section make direct and indirect Raman detection challenging.

View Article and Find Full Text PDF

Here we describe the synthesis and evaluation of a molecular corrosion sensor that can be applied in situ in aerospace coatings, then used to detect corrosion after the coating has been applied. A pH-sensitive molecule, 4-mercaptopyridin (4-MP), is attached to a gold nanoparticle to allow surface-enhanced Raman-scattering (SERS) for signal amplification. These SERS nanoparticles, when combined with an appropriate micron-sized carrier system, are incorporated directly into an MIL-SPEC coating and used to monitor the process onset and progression of corrosion using pH changes occurring at the metal-coating interface.

View Article and Find Full Text PDF

Highly Stable Flexible SERS-Imprinted Membrane Based on Plasmonic MOF Material for the Selective Detection of Chrysoidin in Environmental Water.

Polymers (Basel)

December 2024

Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

Chrysoidin (CG) can be ingested into the human body through the skin and cause chronic toxicity, so the detection of CG levels in the environment is crucial. In this study, we synthesize F-Ag@ZIF-8/PVC molecular-imprinted membranes (FZAP-MIM) by an innovative combination of SERS detection, membrane separation, and a molecular-imprinted technique in order to perform the analysis of CG in water. The plasmonic MOF material as a SERS substrate helps to enrich the target and realize the spatial overlap of the target with the nanoparticle tip "hotspot".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!