Direct stem cell encapsulation and cardiac differentiation within supporting biomaterial scaffolds are critical for reproducible and scalable production of the functional human tissues needed in regenerative medicine and drug-testing applications. Producing cardiac tissues directly from pluripotent stem cells rather than assembling tissues using pre-differentiated cells can eliminate multiple cell-handling steps that otherwise limit the potential for process automation and production scale-up. Here we asked whether our process for forming 3D developing human engineered cardiac tissues using poly(ethylene glycol)-fibrinogen hydrogels can be extended to widely used and printable gelatin methacryloyl (GelMA) hydrogels. We demonstrate that low-density GelMA hydrogels can be formed rapidly using visible light (<1 min) and successfully employed to encapsulate human induced pluripotent stem cells while maintaining high cell viability. Resulting constructs had an initial stiffness of approximately 220 Pa, supported tissue growth and dynamic remodeling, and facilitated high-efficiency cardiac differentiation (>70%) to produce spontaneously contracting GelMA human engineered cardiac tissues (GEhECTs). GEhECTs initiated spontaneous contractions on day 8 of differentiation, with synchronicity, frequency, and velocity of contraction increasing over time, and displayed developmentally appropriate temporal changes in cardiac gene expression. GEhECT-dissociated cardiomyocytes displayed well-defined and aligned sarcomeres spaced at 1.85 ± 0.1 μm and responded appropriately to drug treatments, including the β-adrenergic agonist isoproterenol and antagonist propranolol, as well as to outside pacing up to 3.0 Hz. Overall results demonstrate that GelMA is a suitable biomaterial for the production of developing cardiac tissues and has the potential to be employed in scale-up production and bioprinting of GEhECTs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.6b00226DOI Listing

Publication Analysis

Top Keywords

cardiac tissues
20
pluripotent stem
8
stem cell
8
cell encapsulation
8
gelatin methacryloyl
8
human engineered
8
engineered cardiac
8
gelma hydrogels
8
cardiac
7
tissues
7

Similar Publications

Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.

View Article and Find Full Text PDF

The objective of this study was to investigate the cardioprotective effects of Munziq on abnormal body fluid myocardial ischemia-reperfusion injury (MIRI) and its underlying mechanism.Normal rats and rats with abnormal body fluid (ABF) were pre-treated with Munziq for 21 days. Following this, MIRI models were established.

View Article and Find Full Text PDF

A combination of gold nanoparticles and laser photobiomodulation to boost antioxidant defenses in the recovery of muscle injuries caused by Bothrops jararaca venom.

Lasers Med Sci

January 2025

Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.

Unlabelled: This study aimed to evaluate gold nanoparticles (GNPs) and photobiomodulation (PBM), associated with antibothropic serum (AS), to treat a muscle lesion induced by Bothrops jararaca venom.

Methods: 108 Swiss male mice were used, divided into nine groups (n = 12) with different combinations of treatments. Animals were inoculated with 250 µg of B.

View Article and Find Full Text PDF

Cardiac MRI Evaluation of Heart Failure and Cardiomyopathies.

R I Med J (2013)

February 2025

Brown University Health Cardiovascular Institute; Rhode Island, the Miriam and Newport Hospitals; Warren Alpert Medical School, Brown University.

Cardiac magnetic resonance imaging (CMR) is an exciting noninvasive imaging modality with increasing utilization in the field of cardiovascular medicine. In conjunction with echocardiogram, computed tomography, and invasive therapies, CMR has provided exceptional capability to further evaluate complex clinical cardiac conditions. CMR provides both anatomical and physiological information of a variety of tissue types, without the need for ionizing radiation.

View Article and Find Full Text PDF

Diagnostic Feasibility of Cardiac PET CT in the Evaluation of Inflammatory, Infectious, and Malignant Heart Disease.

R I Med J (2013)

February 2025

Alpert Medical School of Brown University, Department of Medicine, Division of Cardiology, Rhode Island Hospital.

Cardiac Positron Emission Tomography (PET) is a power- ful imaging tool with diverse applications in the detection and diagnosis of various cardiac conditions, including inflammatory, infectious, and neoplastic processes. Using the radiotracer 18F-fluorodeoxyglucose (18F-FDG), cardiac PET enables the identification of cardiac involvement in diseases such as sarcoidosis and severe infections affecting the heart tissue. Additionally, 18F-FDG PET is valuable in the evaluation of cardiac masses, helping to assess their metabolic activity and potential malignancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!