Identifying Factors of Microparticles Modified with Arginine Derivatives That Induce Phenotypic Shifts in Macrophages.

ACS Biomater Sci Eng

Ames National Laboratory, Ames, Iowa 50011, United States.

Published: June 2016

Macrophages are key players in the progression of many diseases, ranging from rheumatoid arthritis to cancer. Drug delivery systems have the potential not only to transport payloads to diseased tissue but also to influence cell behavior. Here, poly(-isopropylacrylamide--acrylic acid) (pNIPAm--AAc) microparticles were modified with 14 different arginine derivatives. These particles were then incubated with interleukin-4 or lipopolysaccharide-stimulated macrophages or naïve macrophages (RAW 264.7). The phenotypic state of the macrophages was assessed by measuring arginase activity, tumor necrosis factor-α (TNF-α) secretion, and nitrite production. Partial least-squares analysis revealed material properties and descriptors that shifted the macrophage phenotype for the three cell conditions in this study. Material descriptors relating to secondary bonding were suggested to play a role in shifting phenotypes in all three macrophage culture conditions. These findings suggest that macrophage responses could be altered through drug delivery vehicles, and this method could be employed to assist in screening potential candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.6b00041DOI Listing

Publication Analysis

Top Keywords

microparticles modified
8
modified arginine
8
arginine derivatives
8
drug delivery
8
macrophages
5
identifying factors
4
factors microparticles
4
derivatives induce
4
induce phenotypic
4
phenotypic shifts
4

Similar Publications

Bioorthogonal chemistry, recognized as a highly efficient tool in chemical biology, has shown significant value in cancer treatment. The primary objective is to develop efficient delivery strategies to achieve enhanced bioorthogonal drug treatment for tumors. Here, Janus microparticles (JMs) loaded with cyclooctene-modified doxorubicin prodrug (TCO-DOX) and tetrazine-modified indocyanine green (Tz-ICG) triggers are reported.

View Article and Find Full Text PDF

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles.

Int J Mol Sci

December 2024

Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland.

To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was explored through the fabrication of polyelectrolyte-coated microparticles. LV was covalently attached to poly(ε-caprolactone) via ring-opening polymerization, resulting in a macromolecular prodrug (LV-PCL) with a hydrolytic release mechanism.

View Article and Find Full Text PDF

Structured beams carrying orbital angular momentum (OAM) provide powerful capabilities for applications in optical tweezers, super-resolution imaging, quantum optics, and ad-vanced microparticle manipulation. However, it is challenging for generate and control the OAM beams at the extreme ultraviolet (EUV) region due to the lack of suitable wave front shaping optics arise from being limited to the strong absorption of most materials. Here, we use a modified Fermat-spiral photon-sieve splitter to simultaneously generate two focused doughnut beams with opposite helical phase.

View Article and Find Full Text PDF

Chitosan is a natural polymer that can degrade in the environment and support green chemistry. It displays superior biocompatibility, easy access, and easy modification due to the reactive amino groups to transform or improve the physical and chemical properties. Chitosan can be chemically modified to enhance its properties, such as water solubility and biological activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!