Wear particles of total joint replacements may lead to an inflammatory response driven by cells of the monocyte/macrophage lineage. Today, there is a general agreement that the continuous release of wear particles by the implant has a critical impact on periprosthetic osteolysis, which can eventually lead to aseptic loosening of the implant. The focus of this study lay on the determination of the polarization of macrophages (M0) toward the pro-inflammatory M1 phenotype or the anti-inflammatory M2-like phenotype upon exposure to differently sized TiO particles. The analysis was done with an in vitro model using THP-1 monocytes. It offers a direct characterization of the polarization profile of the macrophages exposed to nano- (<100 nm, measured hydrodynamic diameter: 518.5 nm) and micro- (<5 μm, measured hydrodynamic diameter: 2213 nm) sized TiO particles in different concentrations (4 × 10 -4 × 10 particles/mL). The polarization profile was analyzed by the quantitative assessment of relative gene expression levels as well as by the determination of specific proteins by enzyme linked immunosorbent assay (ELISA). Analysis by qRT-PCR revealed significantly elevated levels of pro-inflammatory markers such as TNF-α and CD197 at the highest concentration of stimulation by the microsized particles. This was confirmed on the protein level in the cytokine expression profile of TNF-α. Furthermore, no significant differences were found for the markers CCL22 and CD206, which are specific for the M2-like phenotype. In contrast, stimulation by nanoparticles did not induce macrophage polarization toward M1 or M2-like phenotype in any applied concentration. We conclude that the size of the particle is a determinant factor in driving the biological response of macrophages and an increased understanding of this relationship may potentially guide the design of new biomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.6b00006DOI Listing

Publication Analysis

Top Keywords

tio particles
8
wear particles
8
macrophage polarization
4
polarization titanium
4
titanium dioxide
4
dioxide tio
4
particles
4
particles size
4
size matters
4
matters wear
4

Similar Publications

This study investigates the optimization of mechanical milling parameters to enhance the recycling of Ti6Al4V machining chips, addressing a significant challenge in sustainable materials processing. The influence of ball-to-powder ratio (BPR) and ball size distribution on powder characteristics, including crystallite size, particle size, and phase composition, was systematically examined. Key findings include a 30% reduction in crystallite size, with the smallest crystallite size of 51.

View Article and Find Full Text PDF

The effects of filter coating approaches on photocatalytic abatement of formaldehyde in indoor environment using a TiO-based air purifier system.

Environ Res

December 2024

Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea. Electronic address:

Titanium dioxide (TiO) is the most commonly used catalytic medium in the filter system of commercial photocatalytic air purifier (AP). The AP performance can be affected sensitively by the coating conditions of such medium on the filters and its physicochemical properties (e.g.

View Article and Find Full Text PDF

Aero-TiO three-dimensional nanoarchitecture for photocatalytic degradation of tetracycline.

Sci Rep

December 2024

Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.

One of the biggest issues of wide bandgap semiconductor use in photocatalytic wastewater treatment is the reusability of the material and avoiding the contamination of water with the material itself. In this paper, we report on a novel TiO aeromaterial (aero-TiO) consisting of hollow microtetrapods with ZnTiO inclusions. Atomic layer deposition has been used to obtain particles of unique shape allowing them to interlock thereby protecting the photocatalyst from erosion and damage when incorporated in active filters.

View Article and Find Full Text PDF

A cost-effective industrial TiOSO solution was employed to fabricate visible light active sulfur-doped titanium dioxide (S-TiO) via a facile hydrothermal method. The effect of calcination temperature on morphology, particle size, crystallinity, and photocatalytic property of S-TiO was systematically investigated. Successful incorporation of sulfur into TiO was confirmed by carbon-sulfur analysis, X-ray photoelectron spectroscopy (XPS), and Energy dispersive spectrometer (EDS).

View Article and Find Full Text PDF

This study explored the structural, optical, antibacterial, and dielectric properties of TiO nanoparticles synthesized using two distinct approaches: sol-gel and biosynthesis. Density functional tight binding (DFTB+) and density functional theory (DFT) calculations were employed alongside experimental techniques to gain a comprehensive understanding of the electronic-property relationships. peel extract was utilized for the biosynthesis method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!