Abiotic stresses widely constrain the development and reproduction of plant, especially impaired the yield of crops greatly. Recent researches presented pentatricopeptide repeat (PPR) proteins play crucial role in response to abiotic stress. However, the underlying mechanism of PPR genes in regulation of abiotic stress is still obscures. In our recent study, we found that the knockout of rice PPS1 causes pleiotropic growth disorders, including growth retardation, dwarf and sterile pollen, and finally leads to impaired C-U RNA editing at five consecutive sites on the mitochondrial nad3. In this study, we further investigate the roles of PPS1 in abiotic stress tolerance, we confirmed that pss1-RNAi line exhibited enhanced sensitivity to salinity and ABA stress at vegetative stage, specifically. While reactive oxygen species (ROS) accumulate significantly only at reproductive stage, which further activated the expression of several ROS-scavenging system related genes. These results implied that PPS1 functioned on ROS signaling network to contribute for the flexibility to abiotic stresses. Our research emphasizes the stress adaptability mediated by the PPR protein, and also provides new insight into the understanding of the interaction between cytoplasm and nucleus and signal transduction involved in RNA editing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2020.153361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!