Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biosolids samples were collected from 19 Australian WWTPs during 2018 that cover a range of catchment types (urban, rural, industrial waste discharges) and treatment technologies. Samples were analysed for 44 PFAS using isotope dilution and alkaline extraction coupled with quantification with LC-MS/MS. The ΣPFAS mean concentration was 260 ng/g dry weight (dw) and ranged between 4.2 and 910 ng/g dw. The dominant compound class detected were the di-substituted phosphate esters (ΣPAPs mean 140 ng/g dw; range ND - 730 ng/g dw) which contributed 45% of the total mean ΣPFAS mass, followed by perfluoroalkyl carboxylic acids (ΣPFCAs mean 39 ng/g dw; range 2.3-120 ng/g dw) contributing 17%, and the perfluoroalkyl sulfonates (ΣPFSAs mean 28 ng/g dw; range 0.9-220 ng/g) which contributed 16%. Using the population data supplied by the participating WWTPs, the mean annual estimated biosolids-associated PFAS contribution is 6 mg per person per year and ranged between 0.6 mg and 15 mg. A similar population normalised concentration regardless of WWTP, region or capacity suggests that the domestic environment provides the baseline PFAS loading. Statistically significant higher ΣPFAS and PFOS concentrations were observed at urban locations. A weak correlation was observed between annual mass of PFAS associated with each individual WWTP and their percentage industrial waste contribution. This may be important for elevated PFAS concentrations observed in WWTPs with higher industrial waste inputs and requires further research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.129143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!