Miniature microbial solar cells to power wireless sensor networks.

Biosens Bioelectron

Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA; Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA. Electronic address:

Published: April 2021

Conventional wireless sensor networks (WSNs) powered by traditional batteries or energy storage devices such as lithium-ion batteries and supercapacitors have challenges providing long-term and self-sustaining operation due to their limited energy budgets. Emerging energy harvesting technologies can achieve the longstanding vision of self-powered, long-lived sensors. In particular, miniature microbial solar cells (MSCs) can be the most feasible power source for small and low-power sensor nodes in unattended working environments because they continuously scavenge power from microbial photosynthesis by using the most abundant resources on Earth; solar energy and water. Even with low illumination, the MSC can harvest electricity from microbial respiration. Despite the vast potential and promise of miniature MSCs, their power and lifetime remain insufficient to power potential WSN applications. In this overview, we will introduce the field of miniature MSCs, from early breakthroughs to current achievements, with a focus on emerging techniques to improve their performance. Finally, challenges and perspectives for the future direction of miniature MSCs to self-sustainably power WSN applications will be given.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.112970DOI Listing

Publication Analysis

Top Keywords

miniature mscs
12
miniature microbial
8
microbial solar
8
solar cells
8
wireless sensor
8
sensor networks
8
wsn applications
8
power
6
miniature
5
cells power
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!