Streptococcus suis (S. suis) is a gram-positive coccus that causes disease in humans and animals. The codon usage pattern of bacteria reveals a range of evolutionary changes that assist them to enhance tolerance to environments. To better understand the genetic features during the evolution of S. suis, we performed codon usage analysis. Nine pathogenic strains of different serotypes and different geographical distribution were analyzed to better understand the differences in their evolutionary process. Nucleotide compositions and relative synonymous codon usage (RSCU) analysis revealed that A/T-ending codons are dominant in S. suis. Neutrality analysis, correspondence analysis and ENC-plot results revealed that natural selection is the predominant element prompting codon usage. Cluster analysis based on RSCU was roughly consistent with the dendrogram rooted genomic BLAST analysis. Comparison of synonymous codon usage pattern between S. suis and susceptible hosts (H. sapiens and S. scrofa) revealed that the codon usage of S. suis is separated from the synonymous codon usage of susceptible hosts. The CAI values implied that S. suis includes a series of predicted highly expressed coding sequences contained in metabolism and transcriptional regulation, revealing the necessity of this pathogen to deal with various environmental conditions. The study of codon usage in S. suis may provide evidence involving the molecular evolution of bacteria and a better understanding of evolutionary relationships between S. suis and its corresponding hosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2021.104732 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!