Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fructoselysine is formed upon heating during processing of food products, and being a key intermediate in advanced glycation end product formation considered to be potentially hazardous to human health. Human gut microbes can degrade fructoselysine to yield the short chain fatty acid butyrate. However, quantitative information on these biochemical reactions is lacking, and interindividual differences therein are not well established. Anaerobic incubations with pooled and individual human fecal slurries were optimized and applied to derive quantitative kinetic information for these biochemical reactions. Of 16 individuals tested, 11 were fructoselysine metabolizers, with V, K and kcat-values varying up to 14.6-fold, 9.5-fold, and 4.4-fold, respectively. Following fructoselysine exposure, 10 of these 11 metabolizers produced significantly increased butyrate concentrations, varying up to 8.6-fold. Bacterial taxonomic profiling of the fecal samples revealed differential abundant taxa for these reactions (e.g. families Ruminococcaceae, Christenellaceae), and Ruminococcus_1 showed the strongest correlation with fructoselysine degradation and butyrate production (ρ ≥ 0.8). This study highlights substantial interindividual differences in gut microbial degradation of fructoselysine. The presented method allows for quantification of gut microbial degradation kinetics for foodborne xenobiotics, and interindividual differences therein, which can be used to refine prediction of internal exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2021.105078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!