Somatostatin receptor type 5 (SST5) represents the main pharmacological target in the treatment of adrenocorticotroph hormone (ACTH)-secreting tumors. However, molecular predictors of responsiveness to pasireotide require further investigation. The cytoskeleton protein filamin A (FLNA) modulates the responsiveness to somatostatin analogs (SSA) treatment in other types of pituitary tumors by regulating somatostatin receptor type 2 (SST2)/dopamine receptor type 2 (DRD2) expression and activity. Here, we aimed to test the involvement of FLNA in the modulation of SST5 response to SSA in human and murine tumor corticotrophs. Western blot analysis of human corticotropinomas showed that FLNA and SST5 correlate. Both in human primary cultures and AtT-20 cells, FLNA genetic silencing caused a decrease of receptor expression level. Moreover, pasireotide-mediated SST5 downregulation observed in AtT-20 control cells was no further detected in FLNA silenced cells. In AtT-20 cells, in situ PLA experiments revealed an increased number of SST5-FLNA complexes following pasireotide incubation. Finally, FLNA knock down abolished pasireotide-induced SST5 actions on hormone secretion, cell proliferation and apoptosis. In conclusion, FLNA is implicated in SST5 expression modulation and signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2021.111159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!