Global climate change is altering the abundance and spread of various parasites, which has important consequences not only for host-parasite interactions but also for the relationships between different host species. Here, we focus on the myxozoan endoparasite Tetracapsuloides bryosalmonae that causes temperature-dependent proliferative kidney disease (PKD) in salmonids. We characterized the temporal changes in the parasite load and the severity of PKD signs (renal hyperplasia, haematocrit) in two sympatric populations of wild brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). We found that both the parasite load and disease signs vary considerably between individuals, species, rivers and sampling periods. We showed that Atlantic salmon was able to slow down the initial parasite proliferation rate and subsequently tolerate high parasite burden without obvious disease signs. In contrast, the initial parasite proliferation rate was much higher in brown trout, which was followed by the development of severe PKD signs. Thus, the speed of parasite proliferation, rather than the absolute number of the parasites in the host kidney, may play an important role in interspecific variation in PKD susceptibility. To conclude, this study illustrates the usefulness of temporal perspective for understanding host defence mechanisms and climate change-mediated impacts in the wild.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfd.13330DOI Listing

Publication Analysis

Top Keywords

brown trout
12
atlantic salmon
12
parasite proliferation
12
parasite burden
8
proliferative kidney
8
kidney disease
8
wild brown
8
parasite load
8
pkd signs
8
disease signs
8

Similar Publications

6PPD-quinone (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone), a transformation product of the antiozonant 6PPD (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine) is a likely causative agent of coho salmon (Oncorhynchus kisutch) pre-spawn mortality. Stormwater runoff transports 6PPD-quinone into freshwater streams, rapidly leading to neurobehavioral, respiratory distress, and rapid mortality in laboratory exposed coho salmon, but causing no mortality in many laboratory-tested species. Given this identified hazard, and potential for environmental exposure, we evaluated a set of U.

View Article and Find Full Text PDF

Background: Splenic stiffness is a potential imaging marker of portal hypertension. Normative spleen stiffness values are needed to define diagnostic thresholds.

Objective: To report stiffness measurements of the spleen in healthy children undergoing liver magnetic resonance (MR) elastography across MRI vendors and field strengths.

View Article and Find Full Text PDF

Background: Prepancreatic postduodenal portal vein (PPPV) is a rare anatomic variant where the portal vein (PV) runs anterior to the pancreas and posterior to the duodenum. Only 20 cases of PPPV, all in adults, have been reported in literature. We report the first case of PPPV in a pediatric patient discovered intraoperatively during total pancreatectomy with islet autotransplantation (TPIAT) and the third known case in which the PPPV could be isolated intraoperatively.

View Article and Find Full Text PDF

In May 2021, the M/V ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved.

View Article and Find Full Text PDF

is an opportunistic pathogen that can infect humans, animals and aquatic species, which is widely distributed in different aquatic environments and products. In recent years, with the rapid expansion of intensive aquaculture, the disease caused by has occurred. This study aims to understand the pathogenic characteristics of and provide scientific basis for the prevention and control of the epidemic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!