- AD, the most common form of dementia, has a multifactorial etiology, and the current therapy (AChEIs and memantine) is unable to interrupt its progress and fatal outcome. This is reflected in the research programs that are oriented toward the development of new therapeutics able to operate on multiple targets involved in the disease progression. - The patents from 2016 to present regarding the use of AChEIs in AD, concerns the development of new AChEIs, multitarget or multifunctional ligands, or the associations of currently used AChEIs with other compounds acting on different targets involved in the AD. - The development of new multitarget AChEIs promises to identify compounds with great therapeutic potential but requires more time and effort in order to obtain drugs with the optimal pharmacodynamic profile. Otherwise, the research on new combinations of existing drugs, with known pharmacodynamic and ADME profile, could shorten the time and reduce the costs to develop a new therapeutic treatment for AD. From the analyzed data, it seems more likely that a response to the urgent need to develop effective treatments for AD therapy could come more quickly from studies on drug combinations than from the development of new AChEIs.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13543776.2021.1874344DOI Listing

Publication Analysis

Top Keywords

targets involved
8
development acheis
8
acheis
6
acetylcholinesterase inhibitors
4
inhibitors treatment
4
treatment alzheimer's
4
alzheimer's disease
4
disease patent
4
patent review
4
review 2016-present
4

Similar Publications

DCLRE1B as a novel prognostic biomarker associated with immune infiltration: a pancancer analysis.

Sci Rep

December 2024

Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.

The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.

View Article and Find Full Text PDF

The Crimean Congo virus has been reported to be a part of the spherical RNA-enveloped viruses from the Bunyaviridae family. Crimean Congo fever (CCHF) is a fatal disease with having fatality rate of up to 40%. It is declared endemic by the World Health Organization.

View Article and Find Full Text PDF

Objective: This study aimed to examine the levels of physical activity (PA), sleep, and mental health (MH), specifically depression, anxiety, and stress, among Chinese university students. It also aimed to analyze the influencing factors of MH, providing a theoretical foundation for developing intervention programs to improve college students' mental health.

Methods: A stratified, clustered, and phased sampling method was employed.

View Article and Find Full Text PDF

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry.

Nat Commun

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!