The precise and effective generation of micron-sized droplets is one of the most common and important issues for droplet-based microfluidics. Active droplet generation makes use of additional energy input in promoting interfacial instabilities for droplet generation. Here, we report a new technique for the active generation of femtoliter droplets in microfluidic systems using confined interfacial vibration (CIV). The CIV is formed at the orifice of a traditional inkjet nozzle first by pushing the liquid out and then pulling it back. Droplets are pinched off during the withdrawal process, and this is different from the current active droplet generation techniques, which only monodirectionally push the liquid out. Droplets with radius ranging from ca. 1 to 28 μm can be actively generated by CIV at an orifice with radius 30 μm, distinguishing from conventional active generation techniques in which the droplets are always comparable or slightly bigger than the orifice. Experimental results showed that the droplet volume can be customized by controlling the intensity of the CIV. The inherent digital nature of the inkjet technique enables easy and precise regulating of the droplet volume, making it seamlessly compatible with the digital microfluidic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c03368 | DOI Listing |
Sci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.
View Article and Find Full Text PDFSmall
January 2025
School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China.
Advancements in screening technologies employing small organisms have enabled deep profiling of compounds in vivo. However, current strategies for phenotyping of behaving animals, such as zebrafish, typically involve tedious manipulations. Here, we develop and validate a fully automated in vivo screening system (AISS) that integrates microfluidic technology and computer-vision-based control methods to enable rapid evaluation of biological responses of non-anesthetized zebrafish to molecular gradients.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain.
The treatment landscape for advanced melanoma has transformed significantly with the advent of BRAF and MEK inhibitors (BRAF/MEKi) targeting V600 mutations, as well as immune checkpoint inhibitors (ICI) like anti-PD-1 monotherapy or its combinations with anti-CTLA-4 or anti-LAG-3. Despite that, many patients still do not benefit from these treatments at all or develop resistance mechanisms. Therefore, prognostic and predictive biomarkers are needed to identify patients who should switch or escalate their treatment strategies or initiate an intensive follow-up.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!