Biological activity of quaternary ammonium salts and resistance of microorganisms to these compounds.

World J Microbiol Biotechnol

Department of Physico-Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.

Published: January 2021

Quaternary ammonium salts (QASs) are ubiquitous in nature, being found in organisms ranging from microorganisms to vertebrates (e.g., glycine betaine, carnitine) where they have important cellular functions. QASs are also obtained by chemical synthesis. These compounds, due to their diverse chemical structure (e.g. monomeric QAS or gemini) and their biological properties, are widely used in medicine (as disinfectants, drugs, and DNA carriers), industry, environmental protection and agriculture (as preservatives, biocides, herbicides and fungicides). Discussed chemical compounds reduce the adhesion of microorganisms to various biotic and abiotic surfaces and cause the eradication of biofilms produced by pathogenic microorganisms. The properties of these chemicals depend on their chemical structure (length of the alkyl chain, linker and counterion), which has a direct impact on the physicochemical and biological activity of these compounds. QASs by incorporation into the membranes, inhibit the activity of proteins (H-ATPase) and disrupt the transport of substances to the cell. Moreover, in the presence of QASs, changes in lipid composition (qualitative and quantitative) of plasma membrane are observed. The widespread use of disinfectants in commercial products can induce resistance in microorganisms to these surfactants and even to antibiotics. In this article we discuss the biological activity of QASs as cationic surfactants against microorganisms and their resistance to these compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-020-02978-0DOI Listing

Publication Analysis

Top Keywords

biological activity
12
quaternary ammonium
8
ammonium salts
8
resistance microorganisms
8
chemical structure
8
microorganisms
6
compounds
5
qass
5
biological
4
activity quaternary
4

Similar Publications

Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.

View Article and Find Full Text PDF

Immunostimulatory effects of Heyndrickxia coagulans SANK70258.

Biosci Biotechnol Biochem

December 2024

Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, Japan.

Here, we examined the immunomodulating effects of Heyndrickxia coagulans SANK70258 (SANK70258). Mouse splenocytes treated with γ-ray-irradiated SANK70258 produced higher levels of IFN-γ than those with 7 types of lactic acid bacteria. IFN-γ was mainly produced by NK cells, involving IL-12/IL-23, dendritic cells (DCs), and NFκB signaling.

View Article and Find Full Text PDF

Pathogenic microorganisms can infect a variety of niches in the human body. During infection, microbes can only persist if they adapt adequately to the dynamic host environment and the stresses imposed by the immune system. While viruses entirely rely on host cells to replicate, bacteria and fungi use their pathogenicity mechanisms for the acquisition of essential nutrients that lie under host restriction.

View Article and Find Full Text PDF

Background: In the diagnosis of linear IgA bullous dermatosis (LABD), detection of IgA at the epidermal basement membrane zone and circulating IgA autoantibodies are essential. The disease has two subtypes, lamina lucida-type and sublamina densa-type, with 120 kDa LAD-1 and 97 kDa LABD97 as major autoantigens for lamina lucida-type. Normal human epidermal keratinocytes (NHEK) and HaCaT cells are widely used for immunoblotting (IB) in the diagnosis process, but they do not provide high sensitivity and semiquantitative analysis.

View Article and Find Full Text PDF

Cellular senescence offers distinct immunological vulnerabilities in cancer.

Trends Cancer

December 2024

Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA. Electronic address:

Chronic damage following oncogene induction or cancer therapy can produce cellular senescence. Senescent cells not only exit the cell cycle but communicate damage signals to their environment that can trigger immune responses. Recent work has revealed that senescent tumor cells are highly immunogenic, leading to new ways to activate antitumor immunosurveillance and potentiate T cell-directed immunotherapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!