An effective, sensitive, relatively fast, and cost-effective method was developed to determine two types of selected organophosphorus pesticides (OPPs) including diazinon and chlorpyrifos in apple, peach, and four different water samples (river, sea, well, and agriculture wastewater samples) through applying poly(amidoamine)@graphene oxide-reinforced polyvinylidene difluoride thin-film microextraction (PAMAM@GO-PVDF-TFME). The extracted analytes were desorbed via organic solvent and determined using high-performance liquid chromatography-ultraviolet detection (HPLC-UV). The strong interactions between the sorbent and selected analytes (coordination bonds, intermolecular hydrogen bonding, π-π interactions, and hydrophobic effects) made this TFME capable of high extraction performance and capacity. Several factors involved in the PAMAM@GO-PVDF-TFME experiments such as desorption volume, desorption time, sample pH, extraction time, and stirring rate were screened via Plackett-Burman design and then optimized through Box-Behnken design with the purpose of reaching the highest extraction efficiency. The above method showed a good linear range (0.5-500 μg L and 1-500 μg L) with the coefficient of determination better 0.9944, low limits of determination (0.12 and 0.20 μg L), good enrichment factors (99 and 98), acceptable extraction recoveries (99 and 98%), and good spiking recoveries (90-98%) under the optimized condition at three different spike levels for chlorpyrifos and diazinon, respectively. The results confirmed that the presented method would be promising for the determination of various types of these pesticides in environmental and beverage samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-020-04694-w | DOI Listing |
Biosens Bioelectron
January 2025
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China. Electronic address:
Monitoring cardiac rhythm is crucial for diagnosis of heart failure. However, the deficient sensitivity of polyvinylidene fluoride (PVDF) sensors impede their application in monitoring of cardiac rhythm due to the limited piezoelectricity. Here, doping of CoFeO and aligning fibers were jointly adopted to enhance the piezoelectricity of PVDF, attributed to the transformation of α-PVDF to β-PVDF from 51.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Materials Design and Engineering, Beijing Institute of Fashion Technology Beijing China
Unidirectional moisture-conducting fabrics were prepared by electrospraying polyvinylidene fluoride (PVDF) and polyvinyl chloride (PVC) onto three green fabric substrates, namely cotton, hemp, and modal. Experiments were conducted to examine the effects of coating thickness, coating material, and substrate material on the moisture conductivity of the fabrics. The electrospraying technique was effective in forming uniform and strongly adhered PVDF and PVC coatings on the fabric substrates, and the coating thickness and material type had a significant effect on the fabric's moisture conductivity.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
Dielectric nanocomposites have garnered significant interest owing to their potential applications in energy storage. However, achieving high energy density (U) and charge/discharge efficiency (η) remains a challenge in their fabrication. In this paper, core-shell structured BaTiO@Polyvinylpyrrolidone (BT@PVP) nanoparticles are prepared, and incorporated into a semi-crystalline polyvinylidene fluoride (PVDF) matrix.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
Burn care and treatment differ markedly from other types of wounds, as they are significantly more prone to infections and struggle to maintain fluid balance post-burn. Moreover, the limited self-healing abilities exacerbate the likelihood of scar formation, further complicating the recovery process. To tackle these issues, an asymmetric wound dressing comprising a quercetin-loaded poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB@Qu) hydrophilic layer and a zinc oxide nanoparticle-loaded, thermally treated polyvinylidene fluoride (HPVDF@ZnO) hydrophobic layer is designed.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Portici Research Centre, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 80055 Portici, Italy.
Polyvinylidene fluoride (PVDF)-based materials are the most researched polymers in the field of energy harvesting. Their production in thin-film form through printing technologies can potentially offer several manufacturing and performance advantages, such as low-cost, low-temperature processing, use of flexible substrates, custom design, low thermal inertia and surface-scaling performance. However, solution-based processes, like printing, miss fine control of the microstructure during film-forming, making it difficult to achieve a high level of polarization, necessary for PVDF to exhibit electroactive characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!