Caveolin-1 is Involved in Regulating the Biological Response of Cells to Nanosecond Pulsed Electric Fields.

J Membr Biol

Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, San Antonio, TX, 78234, USA.

Published: April 2021

Nanosecond pulsed electric fields (nsPEFs) induce changes in the plasma membrane (PM), including PM permeabilization (termed nanoporation), allowing free passage of ions into the cell and, in certain cases, cell death. Recent studies from our laboratory show that the composition of the PM is a critical determinant of PM nanoporation. Thus, we hypothesized that the biological response to nsPEF exposure could be influenced by lipid microdomains, including caveolae, which are specialized invaginations of the PM that are enriched in cholesterol and contain aggregates of important cell signaling proteins, such as caveolin-1 (Cav1). Caveolae play a significant role in cellular signal transduction, including control of calcium influx and cell death by interaction of Cav1 with regulatory signaling proteins. Present results show that depletion of Cav1 increased the influx of calcium, while Cav1 overexpression produced the opposite effect. Additionally, Cav1 is known to bind and sequester important cell signaling proteins within caveolae, rendering the binding partners inactive. Imaging of the PM after nsPEF exposure showed localized depletion of PM Cav1 and results of co-immunoprecipitation studies showed dissociation of two critical Cav1 binding partners (transient receptor potential cation channel subfamily C1 (TRPC) and inositol trisphosphate receptor (IPR)) after exposure to nsPEFs. Release of TRPC and IPR from Cav1 would activate downstream signaling cascades, including store-operated calcium entry, which could explain the influx in calcium after nsPEF exposure. Results of the current study establish a significant relationship between Cav1 and the activation of cell signaling pathways in response to nsPEFs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-020-00160-zDOI Listing

Publication Analysis

Top Keywords

nspef exposure
12
cell signaling
12
signaling proteins
12
cav1
9
biological response
8
nanosecond pulsed
8
pulsed electric
8
electric fields
8
cell death
8
depletion cav1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!